Abstract:
An LED light fixture assembly includes an elongated first support member, an elongated second support member spaced from and substantially parallel to the first support member, and a plurality of elongated LED lighting fixtures coupled to and extending between the first support member and the second support member. Each LED lighting fixture includes an elongated structural frame member having a substantially channel shaped support portion, and a mounting portion opposite the support portion. Each LED lighting fixture also includes a plurality of LED light modules secured to and positioned along the mounting portion, and a cover extending along and supported by the mounting portion. The cover is positioned so light emitted from the plurality of LED light modules passes through the cover and away from the mounting portion.
Abstract:
The present invention provides a multi-adjustable LED luminaire having an integrated active cooling system to minimize heat buildup and increase operating performance. The multi-adjustable LED luminaire can have a generally cylindrical configuration, or a generally spherical configuration, and is operably connected to an elongated track that supplies power to the luminaire. The LED luminaire includes an upper housing segment having a power supply, and a lower housing segment that includes the active cooling system and an LED light engine coupled to a heat sink. The active cooling systems draws ambient air into a rearward portion of the housing and forces air over the heat sink and LED light engine. A power distribution PCB of the cooling system monitors the temperature of the heat sink and can adjust power delivery to the LED based upon the temperature.
Abstract:
An LED light fixture is provided and includes a light engine assembly having a plurality of LED light modules mounted to a printed circuit board. The light engine assembly has a substantially circular periphery. A substantially cylindrical main body portion surrounds the light engine assembly and is sized to define a substantially annular gap between an inner surface of the main body portion and the periphery of the light engine. A plurality of radially extending and circumferentially arrayed fins are positioned rearward of the light engine assembly, and a thermal pad is coupled to and positioned between a rear surface of the light engine assembly and the plurality of fins for transferring heat away from the light engine assembly. The annular gap at least partially defines an air flow path in communication with spaces between the fins. An LED track lighting fixture including the LED light fixture also is provided.
Abstract:
The invention relates to a refrigerated display case with an illuminated support member or “mullion” that efficiently transfers heat generated by at least one light emitting diode (LED) to warm and maintain door seals. The invention further relates to a low-profile, elongated LED light fixture that is retrofitted to the display case mullion to provide efficient illumination. The LED light fixture includes an elongated frame having a central hub extending longitudinally along the frame. A pair of opposed arms extending upwardly at an angle from the central hub, wherein the terminus of each arm has a curvilinear configuration that defines a receiver. At least one leg extends rearward from the central hub. Two legs are spaced a distance apart to define an elongated central cavity that that receives a fastener for securement of the fixture to the vertical support within the display case. A printed circuit board resides within a channel of the central hub and a plurality of LEDs are electrically and mechanically connected to the circuit board. A substantially planar lens cover resides within the receiver for securement to the frame.
Abstract:
An LED light fixture is provided and includes a housing with a circular main body portion with a rear wall. A plurality of fins integrally extends from an outer surface of the rear wall of the main body portion. A spindle with an internal bore integrally extends from the outer surface of the rear wall of the main body portion wherein the spindle is positioned among the fins. A light engine assembly is positioned within the main body portion and includes a plurality of LED light modules mounted to a printed circuit board. Each module comprises a LED and a lens extending from the printed circuit board, wherein the printed circuit board resides against an inner surface of the rear wall. An separate enclosure configured to enclose power management components is connected to a rear portion of the housing proximate the fins. The enclosure includes a housing wall arrangement and leads that extend through both an opening in the housing wall and the internal bore of the spindle, past the rear wall of the main body portion and to the printed circuit board.
Abstract:
The present invention is directed to a fluorescent light fixture assembly including a ballast and a novel lighting element that includes an array of LEDs and at least one converter module that enables the existing ballast providing an AC power input to supply DC power to the LED array. The lighting element includes a body that contains the LED array and the converter modules and shares the configuration of the lighting element that is to be retrofitted. The lighting element receives power from the pre-existing ballast, wherein the converter module provides a constant current source to power the LED array. Thus, the lighting element, including the converter module, replaces the conventional fluorescent light tube in a cost-effective retrofit manner with the existing ballast.
Abstract:
The invention provides a light fixture that includes a light engine, a rugged housing, and an internal power module that is thermally isolated. The light fixture includes several novel heat management features designed to thermally isolate the power supply in order to reduce the risk of failure and thereby increase the reliability of the light fixture. The light engine includes groups of light modules, each having a light emitting diode (LED) and a zener diode. The power module resides within a rear receptacle of the housing and includes a power supply, a box, and a cover that enclose the power supply. The housing also includes an arrangement of external fins that dissipate heat generated by the light engine. During operation, heat is generated by the light modules, namely the LEDs, and then is transferred along a flow path through a main body portion of the housing and the fins for dissipation to ambient without negatively impacting the power supply.
Abstract:
An LED light fixture assembly includes an elongated first support member, an elongated second support member spaced from and substantially parallel to the first support member, and a plurality of elongated LED lighting fixtures coupled to and extending between the first support member and the second support member. Each LED lighting fixture includes an elongated structural frame member having a substantially channel shaped support portion, and a mounting portion opposite the support portion. Each LED lighting fixture also includes a plurality of LED light modules secured to and positioned along the mounting portion, and a cover extending along and supported by the mounting portion. The cover is positioned so light emitted from the plurality of LED light modules passes through the cover and away from the mounting portion.