Abstract:
Techniques for partition balancing. Organization identifiers (orgIDs) are acquired for one or more organizations within a multi-organization on-demand services environment having multiple nodes, each of which have one or more partitions. A mapping of the orgIDs to the partitions within the multi-organization on-demand services environment is determined. Resource consumption for the organizations is determined. Resource consumption for the partitions based on the resource consumption of the organization and the mapping of the organization to the partitions is determined. A score for the partitions based on the resource consumption is generated. The partitions are redistributed among the nodes based on the partition scores.
Abstract:
Techniques for partition balancing. Organization identifiers (orgIDs) are acquired for one or more organizations within a multi-organization on-demand services environment having multiple nodes, each of which have one or more partitions. A mapping of the orgIDs to the partitions within the multi-organization on-demand services environment is determined. Resource consumption for the organizations is determined. Resource consumption for the partitions based on the resource consumption of the organization and the mapping of the organization to the partitions is determined. A score for the partitions based on the resource consumption is generated. The partitions are redistributed among the nodes based on the partition scores.
Abstract:
Techniques for partition balancing. Organization identifiers (orgIDs) are acquired for one or more organizations within a multi-organization on-demand services environment having multiple nodes, each of which have one or more partitions. A mapping of the orgIDs to the partitions within the multi-organization on-demand services environment is determined. Resource consumption for the organizations is determined. Resource consumption for the partitions based on the resource consumption of the organization and the mapping of the organization to the partitions is determined. A score for the partitions based on the resource consumption is generated. The partitions are redistributed among the nodes based on the partition scores.
Abstract:
Systems and methods for implementing bulk handling in asynchronous processing are described. For example, an exemplary system includes a processor and a memory to execute instructions at the system; a broker to enqueue received messages; a push connection from the broker to a thread, in which the broker is to push an initial message to the thread for processing; a pull connection from the thread to the broker, in which the thread is to request one or more additional messages for bulk processing with the initial message from the broker; a query interface to issue a database query from the thread to a data store, the database query specifying the initial message and the one or more additional messages as a set of messages to obtain a lock for the set of messages; and a message processing engine to handle the set of messages in bulk based on whether the lock for the set of messages is obtained.
Abstract:
Techniques for partition balancing. Organization identifiers (orgIDs) are acquired for one or more organizations within a multi-organization on-demand services environment having multiple nodes, each of which have one or more partitions. A mapping of the orgIDs to the partitions within the multi-organization on-demand services environment is determined. Resource consumption for the organizations is determined. Resource consumption for the partitions based on the resource consumption of the organization and the mapping of the organization to the partitions is determined. A score for the partitions based on the resource consumption is generated. The partitions are redistributed among the nodes based on the partition scores.
Abstract:
Techniques for partition balancing. Organization identifiers (orgIDs) are acquired for one or more organizations within a multi-organization on-demand services environment having multiple nodes, each of which have one or more partitions. A mapping of the orgIDs to the partitions within the multi-organization on-demand services environment is determined. Resource consumption for the organizations is determined. Resource consumption for the partitions based on the resource consumption of the organization and the mapping of the organization to the partitions is determined. A score for the partitions based on the resource consumption is generated. The partitions are redistributed among the nodes based on the partition scores.
Abstract:
Techniques for partition balancing. Organization identifiers (orgIDs) are acquired for one or more organizations within a multi-organization on-demand services environment having multiple nodes, each of which have one or more partitions. A mapping of the orgIDs to the partitions within the multi-organization on-demand services environment is determined. Resource consumption for the organizations is determined. Resource consumption for the partitions based on the resource consumption of the organization and the mapping of the organization to the partitions is determined. A score for the partitions based on the resource consumption is generated. The partitions are redistributed among the nodes based on the partition scores.
Abstract:
In accordance with disclosed embodiments, there are provided systems and methods for implementing bulk handling in asynchronous processing. According to a particular embodiment such a system includes a processor and a memory to execute instructions at the system; a broker to enqueue received messages; a push connection from the broker to a thread, in which the broker is to push an initial message to the thread for processing; a pull connection from the thread to the broker, in which the thread is to request one or more additional messages for bulk processing with the initial message from the broker; a query interface to issue a database query from the thread to a data store, the database query specifying the initial message and the one or more additional messages as a set of messages to obtain a lock for the set of messages; and a message processing engine to handle the set of messages in bulk based on whether the lock for the set of messages is obtained. Other related embodiments are disclosed.