NEURAL MACHINE TRANSLATION WITH LATENT TREE ATTENTION

    公开(公告)号:US20180300317A1

    公开(公告)日:2018-10-18

    申请号:US15901722

    申请日:2018-02-21

    Inventor: James BRADBURY

    Abstract: We introduce an attentional neural machine translation model for the task of machine translation that accomplishes the longstanding goal of natural language processing to take advantage of the hierarchical structure of language without a priori annotation. The model comprises a recurrent neural network grammar (RNNG) encoder with a novel attentional RNNG decoder and applies policy gradient reinforcement learning to induce unsupervised tree structures on both the source sequence and target sequence. When trained on character-level datasets with no explicit segmentation or parse annotation, the model learns a plausible segmentation and shallow parse, obtaining performance close to an attentional baseline.

    Structured Text Translation
    2.
    发明申请

    公开(公告)号:US20200184020A1

    公开(公告)日:2020-06-11

    申请号:US16264392

    申请日:2019-01-31

    Abstract: Approaches for the translation of structured text include an embedding module for encoding and embedding source text in a first language, an encoder for encoding output of the embedding module, a decoder for iteratively decoding output of the encoder based on generated tokens in translated text from previous iterations, a beam module for constraining output of the decoder with respect to possible embedded tags to include in the translated text for a current iteration using a beam search, and a layer for selecting a token to be included in the translated text for the current iteration. The translated text is in a second language different from the first language. In some embodiments, the approach further includes scoring and pointer modules for selecting the token based on the output of the beam module or copied from the source text or reference text from a training pair best matching the source text.

    STRUCTURED TEXT TRANSLATION
    5.
    发明申请

    公开(公告)号:US20210216728A1

    公开(公告)日:2021-07-15

    申请号:US17214691

    申请日:2021-03-26

    Abstract: Approaches for the translation of structured text include an embedding module for encoding and embedding source text in a first language, an encoder for encoding output of the embedding module, a decoder for iteratively decoding output of the encoder based on generated tokens in translated text from previous iterations, a beam module for constraining output of the decoder with respect to possible embedded tags to include in the translated text for a current iteration using a beam search, and a layer for selecting a token to be included in the translated text for the current iteration. The translated text is in a second language different from the first language. In some embodiments, the approach further includes scoring and pointer modules for selecting the token based on the output of the beam module or copied from the source text or reference text from a training pair best matching the source text.

Patent Agency Ranking