DISTRIBUTED KEY CACHING FOR ENCRYPTED KEYS
    3.
    发明申请

    公开(公告)号:US20190097791A1

    公开(公告)日:2019-03-28

    申请号:US15716677

    申请日:2017-09-27

    Abstract: Methods, systems, and devices for distributed caching of encrypted encryption keys are described. Some multi-tenant database systems may support encryption of data records. To efficiently handle multiple encryption keys across multiple application servers, the database system may store the encryption keys in a distributed cache accessible by each of the application servers. To securely cache the encryption keys, the database system may encrypt (e.g., wrap) each data encryption key (DEK) using a second encryption key (e.g., a key encryption key (KEK)). The database system may store the DEKs and KEKs in separate caches to further protect the encryption keys. For example, while the encrypted DEKs may be stored in the distributed cache, the KEKs may be stored locally on application servers. The database system may further support “bring your own key” (BYOK) functionality, where a user may upload a tenant secret or tenant-specific encryption key to the database.

    DISTRIBUTED KEY CACHING FOR ENCRYPTED KEYS
    4.
    发明申请

    公开(公告)号:US20200322139A1

    公开(公告)日:2020-10-08

    申请号:US16863402

    申请日:2020-04-30

    Abstract: Methods, systems, and devices for distributed caching of encrypted encryption keys are described. Some multi-tenant database systems may support encryption of data records. To efficiently handle multiple encryption keys across multiple application servers, the database system may store the encryption keys in a distributed cache accessible by each of the application servers. To securely cache the encryption keys, the database system may encrypt (e.g., wrap) each data encryption key (DEK) using a second encryption key (e.g., a key encryption key (KEK)). The database system may store the DEKs and KEKs in separate caches to further protect the encryption keys. For example, while the encrypted DEKs may be stored in the distributed cache, the KEKs may be stored locally on application servers. The database system may further support “bring your own key” (BYOK) functionality, where a user may upload a tenant secret or tenant-specific encryption key to the database.

    Distributed key caching for encrypted keys

    公开(公告)号:US10680804B2

    公开(公告)日:2020-06-09

    申请号:US15716677

    申请日:2017-09-27

    Abstract: Methods, systems, and devices for distributed caching of encrypted encryption keys are described. Some multi-tenant database systems may support encryption of data records. To efficiently handle multiple encryption keys across multiple application servers, the database system may store the encryption keys in a distributed cache accessible by each of the application servers. To securely cache the encryption keys, the database system may encrypt (e.g., wrap) each data encryption key (DEK) using a second encryption key (e.g., a key encryption key (KEK)). The database system may store the DEKs and KEKs in separate caches to further protect the encryption keys. For example, while the encrypted DEKs may be stored in the distributed cache, the KEKs may be stored locally on application servers. The database system may further support “bring your own key” (BYOK) functionality, where a user may upload a tenant secret or tenant-specific encryption key to the database.

    MASS ENCRYPTION MANAGEMENT
    6.
    发明申请

    公开(公告)号:US20190114438A1

    公开(公告)日:2019-04-18

    申请号:US15782087

    申请日:2017-10-12

    Abstract: Methods, systems, and devices for mass encryption management are described. In some database systems, users may select encryption settings for storing data records at rest. A database may receive a request to perform an encryption process on multiple data records corresponding to a user, for example, based on a user input or a change in encryption settings. A database server may partition the data records for encryption (e.g., encryption, decryption, key rotation, or scheme modification) into one or more data record groups of similar sizes, and may perform the encryption process on one record group at a time (e.g., to reduce overhead in the system). The database server may additionally support restricting user access to the data records being actively processed, estimating resources needed for the processing, determining data record encryption statuses to be displayed by a user device, or some combination of these features.

    FILTERING AND UNICITY WITH DETERMINISTIC ENCRYPTION

    公开(公告)号:US20180375838A1

    公开(公告)日:2018-12-27

    申请号:US15634447

    申请日:2017-06-27

    Abstract: Some database systems may implement encryption services to improve the security of data stored in databases. Certain functionality may or may not be supported depending on the implemented encryption scheme. For example, the encryption service may perform deterministic encryption, which may support filtering and unicity on the resulting ciphertexts. To handle case insensitive filtering, the encryption service may encrypt both a plaintext value and a normalized (e.g., lowercased) plaintext value. A database may perform the case insensitive filtering on the stored ciphertexts corresponding to the normalized plaintext values, but may retrieve the ciphertexts corresponding to the standard plaintext values. To handle a unicity requirement, the database may generate additional unique identifiers to distinguish between duplicate ciphertexts. For example, during a key rotation process, potential duplicates may pass the unicity check based on the unique identifiers, and the database may later fix these potential duplicates.

    Distributed key caching for encrypted keys

    公开(公告)号:US11700112B2

    公开(公告)日:2023-07-11

    申请号:US16863402

    申请日:2020-04-30

    Abstract: Methods, systems, and devices for distributed caching of encrypted encryption keys are described. Some multi-tenant database systems may support encryption of data records. To efficiently handle multiple encryption keys across multiple application servers, the database system may store the encryption keys in a distributed cache accessible by each of the application servers. To securely cache the encryption keys, the database system may encrypt (e.g., wrap) each data encryption key (DEK) using a second encryption key (e.g., a key encryption key (KEK)). The database system may store the DEKs and KEKs in separate caches to further protect the encryption keys. For example, while the encrypted DEKs may be stored in the distributed cache, the KEKs may be stored locally on application servers. The database system may further support “bring your own key” (BYOK) functionality, where a user may upload a tenant secret or tenant-specific encryption key to the database.

    Mass encryption management
    9.
    发明授权

    公开(公告)号:US10860727B2

    公开(公告)日:2020-12-08

    申请号:US16667618

    申请日:2019-10-29

    Abstract: Methods, systems, and devices for mass encryption management are described. In some database systems, users may select encryption settings for storing data records at rest. A database may receive a request to perform an encryption process on multiple data records corresponding to a user, for example, based on a user input or a change in encryption settings. A database server may partition the data records for encryption (e.g., encryption, decryption, key rotation, or scheme modification) into one or more data record groups of similar sizes, and may perform the encryption process on one record group at a time (e.g., to reduce overhead in the system). The database server may additionally support restricting user access to the data records being actively processed, estimating resources needed for the processing, determining data record encryption statuses to be displayed by a user device, or some combination of these features.

    MASS ENCRYPTION MANAGEMENT
    10.
    发明申请

    公开(公告)号:US20200143065A1

    公开(公告)日:2020-05-07

    申请号:US16667618

    申请日:2019-10-29

    Abstract: Methods, systems, and devices for mass encryption management are described. In some database systems, users may select encryption settings for storing data records at rest. A database may receive a request to perform an encryption process on multiple data records corresponding to a user, for example, based on a user input or a change in encryption settings. A database server may partition the data records for encryption (e.g., encryption, decryption, key rotation, or scheme modification) into one or more data record groups of similar sizes, and may perform the encryption process on one record group at a time (e.g., to reduce overhead in the system). The database server may additionally support restricting user access to the data records being actively processed, estimating resources needed for the processing, determining data record encryption statuses to be displayed by a user device, or some combination of these features.

Patent Agency Ranking