Abstract:
An imaging system is presented for imaging objects within a field of view of the system. The imaging system comprises an imaging lens arrangement, a light detector unit at a certain distance from the imaging lens arrangement, and a control unit connectable to the output of the detection unit. The imaging lens arrangement comprises an imaging lens and an optical element located in the vicinity of the lens aperture, said optical element introducing aperture coding by an array of regions differently affecting a phase of light incident thereon which are randomly distributed within the lens aperture, thereby generating an axially-dependent randomized phase distribution in the Optical Transfer Function (OTF) of the imaging system resulting in an extended depth of focus of the imaging system. The control unit is configured to decode the sampled output of the detection unit by using the random aperture coding to thereby extract 3D information of the objects in the field of view of the light detector unit.
Abstract:
An imaging system and method are presented. The system comprises an imaging lens unit, an imaging detector, and a birefringent element located between the imaging lens unit and the imaging detector. The system is thus configure and operable to provide in-focus imaging of objects located at both near-field and far-field ranges. Also provided is an optical device configured to be mounted on an imaging lens, being one of the following: a lens of an individual's glasses, on a contact lens, and an eye internal lens. The optical device is configured to be located between the imaging lens and the retina and comprises a birefringent element, to thereby provide in-focus imaging onto the retina of the objects located at both near-field and far-field ranges therefrom.
Abstract:
A device for use in optical signal control is presented. The device comprises an amplification waveguide, including a pumpable medium, and a reference and a control inputs and an output selectively allowing transmission of light respectively into and out of said amplification waveguide. The reference input, the amplification waveguide and the output define together a transmission scheme for reference light through the pumpable medium. The control input and the amplification waveguide define a depletion scheme for the pumpable medium and control light. The device thus allows for controlling an output signal, formed by the transmission of the reference light, by controllable depletion of the pumpable medium.
Abstract:
An imaging method and system are presented for use in sub-wavelength super resolution imaging of a subject. The imaging system comprises a spatial coding unit configured for collecting light coming from the scanned subject and being spaced from the subject a distance smaller than a wavelength range of said light; a light detection unit located upstream of the spatial coding unit with respect to light propagation from the object, and configured to define a pixel array and a spatial decoding unit, which is associated with said pixel array and is configured for applying spatial decoding to a magnified image of the scanned subject, thereby producing nanometric spatial resolution of the image.
Abstract:
An imaging system is presented for use in multi-range imaging of an object scene by incoherent light. The imaging system comprises aligned a phase mask section, a single focus lens section, and a pixel detector array (PDA). The phase mask section has a generally non-diffractive, narrowly bounded, phase variation corresponding to a profile of a through-object Modulated Transfer Function (MTF) of the imaging system, where the profile has, at an at least one non-zero spatial frequency, at least two regions of growth leading to the MTF higher than 10%.
Abstract:
An imaging system is presented for imaging objects within a field of view of the system. The imaging system comprises an imaging lens arrangement, a light detector unit at a certain distance from the imaging lens arrangement, and a control unit connectable to the output of the detection unit. The imaging lens arrangement comprises an imaging lens and an optical element located in the vicinity of the lens aperture, said optical element introducing aperture coding by an array of regions differently affecting a phase of light incident thereon which are randomly distributed within the lens aperture, thereby generating an axially-dependent randomized phase distribution in the Optical Transfer Function (OTF) of the imaging system resulting in an extended depth of focus of the imaging system. The control unit is configured to decode the sampled output of the detection unit by using the random aperture coding to thereby extract 3D information of the objects in the field of view of the light detector unit.
Abstract:
A system and method are presented for use in monitoring one or more conditions of a subject's body. The system includes a control unit which includes an input port for receiving image data, a memory utility, and a processor utility. The image data is indicative of data measured by a pixel detector array and is in the form of a sequence of speckle patterns generated by a portion of the subject's body in response to illumination thereof by coherent light according to a certain sampling time pattern. The memory utility stores one or more predetermined models, the model comprising data indicative of a relation between one or more measurable parameters and one or more conditions of the subject's body. The processor utility is configured and operable for processing the image data to determine one or more corresponding body conditions; and generating output data indicative of the corresponding body conditions.
Abstract:
An imaging arrangement and method for extended the depth of focus are provided. The imaging arrangement comprises an imaging lens having a certain affective aperture, and an optical element associated with said imaging lens. The optical element is configured as a phase-affecting, non-diffractive optical element defining a spatially low frequency phase transition. The optical element and the imaging lens define a predetermined pattern formed by spaced-apart substantially optically transparent features of different optical properties. Position of at least one phase transition region of the optical element within the imaging lens plane is determined by at least a dimension of said affective aperture.
Abstract:
An optical arrangement is provided for use in imaging with a large depth of focus. The optical arrangement comprises an aperture unit, and a replication unit. The replication unit is configured for producing a plurality of replicas of an input optical field passed through the aperture unit such that the replicas include at least two replicas that are of substantially the same phase distribution and are created at different regions of the aperture unit plane.