摘要:
Disclosed are an optical burst transport network, a node, a transmission method and a computer storage medium. The method comprises: measuring, by a master node, the network ring length of an OBTN, and according to a measurement result, calculating the length of a data frame, the number of time slots in the data frame, the length of the time slots and the guard interval of the time slots; according to the calculated length of the data frame, the number of time slots in the data frame, the length of the time slots and the guard interval of the time slots, sending a testing data frame and a testing control frame to a slave node to conduct frame synchronization training and time slot synchronization training; according to a result of the frame synchronization training and a result of the time slot synchronization training, sending, by the master node, a data frame and a bandwidth map to the slave node; and according to a bandwidth request sent from the node, generating, by the master node, a new bandwidth map, and sending the new bandwidth map to the slave node.
摘要:
A data mapping method and a data mapping device for an optical transport network are provided. The method includes: mapping packet service data or constant bit rate data to a Super Optical Channel Data Unit (ODUS) and mapping the ODUS to a Super Optical Channel Transport Unit (OTUS); distributing the OTUS to a plurality of electrical lane signals, dividing the plurality of electrical lane signals into one or more groups and mapping the one or more groups of electrical lane signals to corresponding Super Optical Channels (OChSi), wherein rates of the ODUS and the OTUS are both N times of 100 Gb/s, a rate of the OChSi is M times of 100 Gb/s, tributary slot sizes of the ODUS and the OTUS are both 100 Gb/s, where N is a positive integer equal to or greater than 2, i is a positive integer, and M is a positive integer equal to or greater than 1 but less than N. The present document enables an operator to deploy a beyond-100 G optical transmission system more flexibly, without being limited to select a fixed rate, and improves the spectrum utilization rate of fiber as well as the flexibility and the compatibility of a system.
摘要:
The disclosure provides a transmission method for an Optical Burst Transport Network (OBTN), a slave node and computer storage medium. The transmission method includes that: a slave node performs frame synchronization training and timeslot synchronization training according to a test data frame and test control frame transmitted by a master node, and transmits a result of the frame synchronization training and a result of the timeslot synchronization training to the master node; and the slave node controls reception and transmission of each timeslot in a data frame according to a bandwidth map transmitted by the master node as well as the result of the frame synchronization training and the result of the timeslot synchronization training, and transmits a request for bandwidth to the master node, wherein the test data frame and the data frame are transmitted through a data channel, the test control frame is transmitted through a control channel, and the control channel and the data channel are independent of each other.
摘要:
The present disclosure discloses a method for configuring a node, device and system. The method includes that: a sending node encapsulates configuration information in a wavelength label information frame, wherein the configuration information is configured to configure a downstream node; and the sending node loads the wavelength label information frame to an optical signal, and sends the wavelength label information frame and the optical signal.
摘要:
The disclosure provides a transmission method for an Optical Burst Transport Network (OBTN), a slave node and computer storage medium. The transmission method includes that: a slave node performs frame synchronization training and timeslot synchronization training according to a test data frame and test control frame transmitted by a master node, and transmits a result of the frame synchronization training and a result of the timeslot synchronization training to the master node; and the slave node controls reception and transmission of each timeslot in a data frame according to a bandwidth map transmitted by the master node as well as the result of the frame synchronization training and the result of the timeslot synchronization training, and transmits a request for bandwidth to the master node, wherein the test data frame and the data frame are transmitted through a data channel, the test control frame is transmitted through a control channel, and the control channel and the data channel are independent of each other.
摘要:
Disclosed are an optical burst transport network, a node, a transmission method and a computer storage medium. The method comprises: measuring, by a master node, the network ring length of an OBTN, and according to a measurement result, calculating the length of a data frame, the number of time slots in the data frame, the length of the time slots and the guard interval of the time slots; according to the calculated length of the data frame, the number of time slots in the data frame, the length of the time slots and the guard interval of the time slots, sending a testing data frame and a testing control frame to a slave node to conduct frame synchronization training and time slot synchronization training; according to a result of the frame synchronization training and a result of the time slot synchronization training, sending, by the master node, a data frame and a bandwidth map to the slave node; and according to a bandwidth request sent from the node, generating, by the master node, a new bandwidth map, and sending the new bandwidth map to the slave node.
摘要:
A data mapping method and a data mapping device for an optical transport network are provided. The method includes: mapping packet service data or constant bit rate data to a Super Optical Channel Data Unit (ODUS) and mapping the ODUS to a Super Optical Channel Transport Unit (OTUS); distributing the OTUS to a plurality of electrical lane signals, dividing the plurality of electrical lane signals into one or more groups and mapping the one or more groups of electrical lane signals to corresponding Super Optical Channels (OChSi), wherein rates of the ODUS and the OTUS are both N times of 100 Gb/s, a rate of the OChSi is M times of 100 Gb/s, tributary slot sizes of the ODUS and the OTUS are both 100 Gb/s, where N is a positive integer equal to or greater than 2, i is a positive integer, and M is a positive integer equal to or greater than 1 but less than N. The present document enables an operator to deploy a beyond-100 G optical transmission system more flexibly, without being limited to select a fixed rate, and improves the spectrum utilization rate of fiber as well as the flexibility and the compatibility of a system.