摘要:
It's an object of the invention to provide an object detection device capable of detecting an object for detection in an input image with high precision. In an object detection device 1, a detection window setting unit 11 receives a photographic image 21 photographed by a camera. The detection window setting unit 11 sets a detection window area in the photographic image 21 and generates a normal window image 22 by cutting out the detection window area from the photographic image 21. An image processing unit 12 performs image processing such as enlargement and reduction, etc. on the photographic image 21. Each modified window images 23 is cut out from each of the enlarged photographic image 21 and the reduced photographic image 21. A degree calculation unit 13 calculates matching rates indicating a possibility the object for detection in the window image for each window images on the basis of feature data 51 indicating a feature of the object for detection. A determination unit 14 determines whether or not the detection object is present in the detection window area on the basis of the matching rates of each window image.
摘要:
It's an object of the invention to provide an object detection device capable of detecting an object for detection in an input image with high precision. In an object detection device 1, a detection window setting unit 11 receives a photographic image 21 photographed by a camera. The detection window setting unit 11 sets a detection window area in the photographic image 21 and generates a normal window image 22 by cutting out the detection window area from the photographic image 21. An image processing unit 12 performs image processing such as enlargement and reduction, etc. on the photographic image 21. Each modified window images 23 is cut out from each of the enlarged photographic image 21 and the reduced photographic image 21. A degree calculation unit 13 calculates matching rates indicating a possibility the object for detection in the window image for each window images on the basis of feature data 51 indicating a feature of the object for detection. A determination unit 14 determines whether or not the detection object is present in the detection window area on the basis of the matching rates of each window image.
摘要:
An image coding apparatus obtains a quantization parameter of a macroblock to be encoded. The quantization parameter is corrected by adding a correction value thereto. An encoding part encodes the macroblock by using the corrected quantization parameter. After the encoding, a quantization parameter correction part calculates the cumulative target amount of codes by accumulating the target amounts of codes set for the encoded macroblocks, respectively, and calculates the cumulative amount of generated codes by accumulating the respective amounts of generated codes of the encoded macroblocks. If the cumulative amount of generated codes is larger than the cumulative target amount of codes, the quantization parameter correction part increments the correction value. A new macroblock to be encoded is quantized more coarsely than the encoded macroblocks.
摘要:
An image processing apparatus includes a first storage section and a second storage section, a storage control section, and a computation section. The storage control section sequentially acquires block images obtained as a result of dividing an input image, and stores the block image as a target block image in the first storage section, while storing, in the second storage section, image data of, in a region of the target block image, a region abutting un-inputted block images in the input image, as image data of an abuttal region. The computation section implements a resizing process for changing the size of the target block image by performing an interpolation calculation using image data of the target block image stored in the first storage section and the image data of the abuttal region stored in the second storage section.
摘要:
It is an object to provide a method of calculating a coding cost by which the magnitude relation of the amounts of generated codes can be estimated with high accuracy. A cost calculation part generates a differential block between a coding object block and a prediction block. Hadamard Transform is performed on the differential block to generate a frequency component block. A conversion factor matrix is generated with the information of a quantization matrix reflected thereon. A coding cost is calculated by multiplying components in the frequency component block individually by components in the conversion factor matrix and adding up the multiplied components. A mode selection part selects an optimum predictive coding method on the basis of the coding cost.
摘要:
A statistical value calculation part specifies macroblocks positioned around an object macroblock and calculates a minimum average value of activities of the macroblocks. When images of the macroblocks are flat and the minimum average value is smaller than an activity of the object macroblock, the minimum average value is set as an adjustment value. A correction factor determination part determines a correction factor on the basis of the adjustment value and a factor determination table. By multiplying a reference quantization step value by the correction factor, a quantization step value of the object macroblock is determined. Since the quantization step value reflects a distribution of the activities of the macroblocks, it is possible to suppress a local change of the quantization step value.
摘要:
An image processing apparatus includes a first storage section and a second storage section, a storage control section, and a computation section. The storage control section sequentially acquires block images obtained as a result of dividing an input image, and stores the block image as a target block image in the first storage section, while storing, in the second storage section, image data of, in a region of the target block image, a region abutting un-inputted block images in the input image, as image data of an abuttal region. The computation section implements a resizing process for changing the size of the target block image by performing an interpolation calculation using image data of the target block image stored in the first storage section and the image data of the abuttal region stored in the second storage section.
摘要:
It is an object to provide a method of calculating a coding cost by which the magnitude relation of the amounts of generated codes can be estimated with high accuracy. A cost calculation part generates a differential block between a coding object block and a prediction block. Hadamard Transform is performed on the differential block to generate a frequency component block. A conversion factor matrix is generated with the information of a quantization matrix reflected thereon. A coding cost is calculated by multiplying components in the frequency component block individually by components in the conversion factor matrix and adding up the multiplied components. A mode selection part selects an optimum predictive coding method on the basis of the coding cost.