Abstract:
In a fuel cell system including a fuel cartridge and a fuel supply module, the fuel cartridge includes at least two ports, wherein a first port from among the at least two ports is a fuel inlet port and a second port from among the at least two ports is a fuel outlet port. The fuel cartridge may also include a fuel pouch or the fuel cartridge itself may be the fuel pouch. The fuel supply module may include a fuel circulation structure that circulates the fuel before the fuel is supplied to the stack. The fuel cell system may be equipped with an electronic apparatus and serve as a source of power.
Abstract:
In a fuel cell system including a fuel cartridge and a fuel supply module, the fuel cartridge includes at least two ports, wherein a first port from among the at least two ports is a fuel inlet port and a second port from among the at least two ports is a fuel outlet port. The fuel cartridge may also include a fuel pouch or the fuel cartridge itself may be the fuel pouch. The fuel supply module may include a fuel circulation structure that circulates the fuel before the fuel is supplied to the stack. The fuel cell system may be equipped with an electronic apparatus and serve as a source of power.
Abstract:
A fuel cell system having a back-up battery and a method of consuming residual fuel in the fuel cell system in which the fuel cell system includes a fuel cell, a system controller, a back-up battery, a converter, a fuel supply control, and a driver to drive the fuel supply control, and a charger disposed between the converter and a load. A power output end of the charger is directly connected to the back-up battery via a switch. The converter includes a first converter connected to the back-up battery and a second converter connected to the fuel cell, and the first and second converters are commonly connected to the charger.
Abstract:
A fuel cell system to rapidly increase the temperature of unit cells. The fuel cell system includes; a plurality of current generating unit cells; a load circuit to supply the current to a load; a short circuit to connect the cells to an electrically closed loop without passing through the load; a thermo sensor to measure the temperature of the cells, and a controller that controls the delivery of the current to the load circuit and the short circuit, according to the temperature measured by the thermo sensor. The fuel cell system can rapidly increase the temperature of the unit cells when the temperature of the unit cells is below an operating temperature, thereby reducing the time required for the fuel cell to generate a stable output voltage.
Abstract:
A direct methanol fuel cell (DMFC) system including: a separator receiving a gas-liquid mixture discharged from a stack and separating the mixture to gas and a liquid; a methanol cartridge storing high concentration methanol; and a fuel mixer for methanol dilution. The separator and the fuel mixer are separate structures, each including an agitator for stirring a liquid. The agitators can be on the same rotation axis.
Abstract:
A fuel cell cartridge includes a fuel pouch to store fuel, the fuel pouch including a fuel outlet; a pressing unit to press the fuel pouch; a variable resistor provided near the fuel pouch; a sensor provided on the pressing unit to read a resistance value of the variable resistor; and a contact pad to transmit an output voltage determined by the resistance value outside the fuel cell cartridge.
Abstract:
A fuel cell system having a fuel pressurizing system. The fuel cell system includes: a cartridge comprising a fuel storage pack; a main body; and a pressurizing unit disposed in the main body to pressurize the fuel storage pack when the cartridge is mated to the main body. The cartridge further includes a pressurizing plate to transmit pressure received from the pressurizing unit to the fuel storage pack when the cartridge is mated to the main body and to preventing the fuel storage pack from being pressurized when the cartridge is separated from the main body. The main body can include a case on which the fuel storage pack and the pressurizing plate are received.
Abstract:
A direct methanol fuel cell (DMFC) system including: a separator receiving a gas-liquid mixture discharged from a stack and separating the mixture to gas and a liquid; a methanol cartridge storing high concentration methanol; and a fuel mixer for methanol dilution. The separator and the fuel mixer are separate structures, each including an agitator for stirring a liquid. The agitators can be on the same rotation axis.
Abstract:
A fuel cell system includes a power unit that generates power using a fuel; a fuel storage unit that stores the fuel; a fuel supply device that conveys the fuel from the fuel storage unit to the power unit; and a control unit that controls the supply of the fuel and the generation of power. The fuel supply device includes a fuel supply control device that controls the supply of fuel according to a signal generated by the control unit. The control unit includes a fuel control unit that generates the signal according to the information of the fuel storage unit and the state information of the power unit.
Abstract:
A power unit, a fuel cartridge, and a fuel cell system having the power unit and the fuel cartridge. The power unit includes a coupling unit to couple with the fuel cartridge. The coupling unit includes a nozzle that receives fuel supplied from the fuel cartridge, a selection key to selectively mate with the fuel cartridge, and an outer unit surrounding the nozzle. An end of the nozzle is located between the selection key and an end of the outer unit.