摘要:
Embodiments include determining whether defects exist in an extreme ultraviolet (EUV) light mask blank. Incident EUV light scattered or diffused by abnormalities in the layers of the mask blank may be measured, normalized, and compared to threshold values to determine if and where a defect exists. Normalizing may be performed by dividing a light intensity value for a pixel by the average of light intensity values for one or more rings of surrounding pixels. A defect may be determined by considering whether the normalized intensity value for a pixel is greater than a pixel threshold to identify the pixel is a candidate for a location with a defect; and by determining whether the sum of normalized light intensity values for a block of pixels including the pixel satisfies a pixel block threshold to determine whether the block scatters or diffuses a critical amount of light to identify a defect.
摘要:
Embodiments include determining whether defects exist in an extreme ultraviolet (EUV) light mask blank. Incident EUV light scattered or diffused by abnormalities in the layers of the mask blank may be measured, normalized, and compared to threshold values to determine if and where a defect exists. Normalizing may be performed by dividing a light intensity value for a pixel by the average of light intensity values for one or more rings of surrounding pixels. A defect may be determined by considering whether the normalized intensity value for a pixel is greater than a pixel threshold to identify the pixel is a candidate for a location with a defect; and by determining whether the sum of normalized light intensity values for a block of pixels including the pixel satisfies a pixel block threshold to determine whether the block scatters or diffuses a critical amount of light to identify a defect.
摘要:
Embodiments include determining whether defects exist in an extreme ultraviolet (EUV) light mask blank. Incident EUV light scattered or diffused by abnormalities in the layers of the mask blank may be measured, normalized, and compared to threshold values to determine if and where a defect exists. Normalizing may be performed by dividing a light intensity value for a pixel by the average of light intensity values for one or more rings of surrounding pixels. A defect may be determined by considering whether the normalized intensity value for a pixel is greater than a pixel threshold to identify the pixel is a candidate for a location with a defect; and by determining whether the sum of normalized light intensity values for a block of pixels including the pixel satisfies a pixel block threshold to determine whether the block scatters or diffuses a critical amount of light to identify a defect.
摘要:
Embodiments include determining whether defects exist in an extreme ultraviolet (EUV) light mask blank. Incident EUV light scattered or diffused by abnormalities in the layers of the mask blank may be measured, normalized, and compared to threshold values to determine if and where a defect exists. Normalizing may be performed by dividing a light intensity value for a pixel by the average of light intensity values for one or more rings of surrounding pixels. A defect may be determined by considering whether the normalized intensity value for a pixel is greater than a pixel threshold to identify the pixel is a candidate for a location with a defect; and by determining whether the sum of normalized light intensity values for a block of pixels including the pixel satisfies a pixel block threshold to determine whether the block scatters or diffuses a critical amount of light to identify a defect.
摘要:
In related art, consideration is not given to that a spatial distribution of scattered light changes in various direction such as forward/backward/sideways according to a difference in micro roughness. Particularly, although a step-terrace structure appearing on an epitaxial growth wafer produces anisotropy in the scattered light distribution, consideration is not given to this point in the related art. The invention includes a process in which light is illuminated to a sample surface, plural detection optical systems mutually different in directions of optical axes detect a spatial distribution of scattered light, and a spatial frequency spectrum of the sample surface is calculated.
摘要:
In a defect inspecting apparatus, the strength of a fatal defect signal decreases due to miniaturization. Thus, in order to assure a high SN ratio, it is necessary to reduce noises caused by scattered light from a wafer. Roughness of a pattern edge and surface roughness which serve as a scattered-light source are spread over the entire wafer. The present invention has discovered the fact that reduction of an illuminated area is a technique effective for decreasing noises. That is to say, the present invention has discovered the fact that creation of an illuminated area having a spot shape and reduction of the dimension of a spot beam are effective. A plurality of temporally and spatially divided spot beams are radiated to the wafer serving as a sample.
摘要:
Disclosed here is a macro inspection apparatus for a sample such as a semiconductor wafer having a pattern formed thereon, the apparatus being capable of detecting abnormalities in dimension and size with high sensitivity.The inspection apparatus for a sample having pattern formed thereon includes: an illumination optical system which illuminates the sample having the pattern formed thereon; a detection optical system which receives scattered light from the pattern; an imaging device which is disposed over a pupil plane of the detection optical system, the imaging device acquiring Fourier images of the pattern; and a processing unit which compares the Fourier images with the Fourier image of the normal pattern to detect an irregularity of the pattern.
摘要:
A bonding apparatus, suitable for accurately bonding large substrates for a liquid crystal display, includes Z-axis drive mechanisms, and upper and lower chambers. The Z-axis drive mechanisms for moving an upper frame vertically are disposed at four corners of a mount. The upper chamber is supported by the upper frame and has an upper table inside. The lower chamber has a lower table inside and is supported on the mount. The upper and lower chambers are united through a seal ring to define a vacuum chamber. Moving the upper frame moves the upper chamber vertically to open or close the vacuum chamber. The lower table is supported via a free joint stage between the plurality of support legs and the table, and is moved horizontally by a side thrust mechanism disposed outside of the vacuum chamber.
摘要:
The invention provides a heat dissipater such as a heat dissipation member that dissipates heat of an integrated circuit that is formed on a flexible substrate such as a flexible printed circuit board. The heat dissipater according to an aspect of the invention includes; a main body section that is formed in the shape of a hollow sleeve in such a manner that the flexible substrate can be inserted through and inserted inside the main body section; and an adhering section that is formed on an inner surface of the main body section in such a manner that the main body section and the integrated circuit are adhered to each other via the adhering section.
摘要:
The present invention provides an inspection apparatus having a high throughput and high sensitivity with respect to a number of various manufacturing processes and defects of interest in inspection of a specimen such as a semiconductor wafer on which a pattern is formed. The apparatus illuminates with light the specimen having the pattern formed thereon, forms an image of the specimen on an image sensor through a reflective optics, and determines the existence/nonexistence of a defect. The reflective optics has a conjugate pair of Fourier transform optics. An aberration of the reflective optics is corrected off-axis. The reflective optics has a field of view in non-straight-line slit form on the specimen surface. Also, the optics is of a reflection type, includes a conjugate pair of Fourier transform optics and has a field of view in non-straight-line slit form. An optimum wavelength band is selected according to the specimen (FIG. 1).