Abstract:
An illumination apparatus that includes a plurality of LEDs of different center emission wavelengths, a photodetector, a path sharing device for introducing light emitted from the plurality of LEDs into the common optical path, a light-introducing device located on the common optical path to introduce part of the light emitted from the plurality of LEDs passing through the common optical path into the photodetector, a feedback controller controlling turning-on states of the LEDs over preset states in accordance with the amount of light emitted from the plurality of LEDs detected by the photodetector, and an illumination light supplying device located on the common optical path to supply light which is emitted from the plurality of LEDs to pass through the common optical path and is not introduced into the photodetector through the light-introducing device, as illumination light for a cellular analysis.
Abstract:
A sharp image showing a thin projecting part is acquired without using a complex dyeing method, and the analysis accuracy is improved. An automatic cell analyzer (1) comprises: an imaging unit (4) for capturing fluorescence emitted from a cell (S) and acquiring a cell image; an exposure changing section (5) for changing the exposure condition when the imaging unit (4) captures cell images; and a processing section (5) for analyzing the cell (S) on the basis of a plurality of cell images respectively captured under the changed exposure conditions.
Abstract:
An observation apparatus for observing an observation object mounted at an observation position on a stage through an immersion objective lens placed below the observation object. The observation apparatus has a liquid pouring device, constructed to be relatively movable with respect to the immersion objective lens, pouring a liquid on a top lens surface of the immersion objective lens from the upper side of the immersion objective lens at a distance from the observation position on the stage; and a position control device automatically adjusting relative positions of a liquid pouring position of the liquid pouring device and the immersion objective lens and automatically adjusting relative positions of the immersion objective lens on which the liquid is poured by the liquid pouring device and a desired observation position on the stage.
Abstract:
A box-type microscope apparatus includes a stage, a microscope, and a housing, which has a fixed housing and a moving housing provided to be openable, closable, and movable with respect to the fixed housing. The box-type microscope apparatus further includes a specimen vessel positioning device for fixing the specimen vessel placed on the stage at a constant position. of the stage and a positioning release device for actuating the specimen vessel positioning means when the moving housing is moved toward a position of a closed state to release a positioning of the specimen vessel performed by the specimen vessel positioning device with respect to the stage when the moving housing is opened.
Abstract:
A heater for microscopes for heating a sample and maintaining the sample, which is mounted on a platform of the microscope, at a preset temperature during observation of the sample. The heater includes a platform for supporting thereon a sample container and a heater for heating at least part of the platform. A first heater box is fitted, open end down, over the platform and is connected thereto to form a first space which surrounds the sample container. A second heater box is then fitted over the first heater box in such a manner that a second space which surrounds the first heater box is formed. Heater means are provided for heating the second space. Accordingly, the temperatures in the first space and in the second space can be controlled independently to achieve better control over the temperature of the sample which is to be observed and to control condensation which may otherwise form in the sample holding container.
Abstract:
A microscope includes an objective lens, an imaging lens projecting light passing through the objective lens to form an image of a specimen, an image sensor located at an imaging position where the image of the specimen is formed, an illumination light source, and a reflecting fluorescence illumination optical system including a dichroic mirror introducing light from the illumination light source into an optical to illuminate the specimen with the light. The microscope further includes a relay optical system forming an intermediate image of the specimen between the objective lens and the imaging lens to relay it to the imaging lens. The dichroic mirror of the reflecting fluorescence illumination optical system is located between the relay optical system and a pupil conjugate position that is conjugate with a pupil position of the objective lens, formed between the relay optical system and the imaging lens.
Abstract:
A bush is pressed into a link plate in a turning link rank that turns relatively with a pin. The bush is molded into a seamless cylindrical shape by cold-forging and is coated with a metal carbide layer formed by cementation of chrome, vanadium and other metals and having Vickers hardness of 1300 Hv or more similarly to the pin. Afterwards, the bush is treated by a quenching, tempering or isothermal transformation process. Thereby, wear resistance of the pins and the link plates of a silent (link) chain is improved, productivity is improved and associated costs are reduced.
Abstract:
A bush is pressed into a link plate in a turning link rank that turns relatively with a pin. The bush is molded into a seamless cylindrical shape by cold-forging and is coated with a metal carbide layer formed by cementation of chrome, vanadium and others and having Vickers hardness of 1300 Hv or more similarly to the pin. After that, the bush is treated by a quenching, tempering or isothermal transformation process. Thereby, wear resistance of the pins and the link plates of a silent (link) chain is improved, productivity is improved and the cost is cut.
Abstract:
In acquisition of an image of cells, a focal position is accurately set at highly active cells rather than focusing on dead cells. Provided is an automatic focusing apparatus (8) used in a microscope (1) that image captures fluorescence emitted from cells to acquire a cell image, the automatic focusing apparatus (8) including a setting unit (5) that sets a luminance range indicating a region where viable cells exist on the basis of a luminance distribution of the acquired cell image; and a focus-detecting unit that detects a focal position on the basis of a luminance of an image of nuclei of the cells within the luminance range set by the setting unit (5).
Abstract:
The size and production costs of an optical microscope apparatus capable of blocking light or maintaining the specimen environment are reduced. The provided optical microscope apparatus includes a microscope that has a stage for mounting a specimen A, a transmission-illumination optical system, and an detection optical system; and a housing that surrounds the microscope, wherein the housing includes a fixed housing, and a movable housing, wherein, among optical parts constituting the transmission-illumination optical system and the image-forming optical system, at least some optical parts disposed above the stage are movable, and wherein a switching mechanism is provided, the switching mechanism being configured to retract the optical parts away from above the stage when the movable housing is disposed in an open position relative to the fixed housing and to substantially align the optical axes of both optical systems when the movable housing is disposed in a closed position relative to the fixed housing.