Abstract:
A semiconductor memory device includes a test address generating circuit configured on the device. The test address generating circuit generates a plurality of test addresses for a test of the semiconductor memory device in response to at least one externally applied test address generation signal. As a result, the number of DUTs can increase, based on a reduction of required address pins, and manufacturing productivity and test efficiency of semiconductor memory devices can increase.
Abstract:
A semiconductor memory device includes a test address generating circuit configured on the device. The test address generating circuit generates a plurality of test addresses for a test of the semiconductor memory device in response to at least one externally applied test address generation signal. As a result, the number of DUTs can increase, based on a reduction of required address pins, and manufacturing productivity and test efficiency of semiconductor memory devices can increase.
Abstract:
A semiconductor memory device includes a memory core unit, N data output buffers, N data output ports, and a plurality of test logic circuits. The memory core unit stores test data through N data lines. The N data output buffers are respectively connected to the corresponding N data lines. The N data output ports are connected to the corresponding N data output buffers, and exchange the test data with an external tester respectively. The plurality of test logic circuits receives the test data through the K data lines from the N data lines, performs test logic operation on the received test data, and provides a data output buffer control signal that determines activation of K data output buffers of the N data output buffers in test mode. The semiconductor memory device reduces test cycle.
Abstract:
An apparatus for automatically analyzing various solutions which are used in the production lines of various industrial fields. Particularly, in the case where the ingredients of a solution is to be analyzed, the test sample is taken in an automatic manner, and carried over a long distance. The carried test sample is subjected to an automatic pre-treatment and an automatic ingredient analysis. Thus the ingredients of a solution can be analyzed in a speedy and accurate manner. Further, the results of the analysis are treated with an on-line real time to be fed back in a speedy manner, and therefore, it is made possible to strictly control the solution ingredients, thereby contributing to the improvement of the quality of products. Furthermore, the expensive analyzing instruments can be protected from corrosion.