摘要:
A process for preparing a palladium nanoparticle ink comprises reacting a reaction mixture comprising a palladium salt, a stabilizer, a reducing agent, and an optional solvent to directly form the palladium nanoparticle ink. During the formation of the palladium nanoparticle ink, the palladium nanoparticles are not isolated from the reaction mixture.
摘要:
An electronic device, such as a thin-film transistor, includes a substrate and a dielectric layer formed from a dielectric composition. The dielectric composition comprises a dielectric material and a low surface tension additive. The low surface tension additive allows for the formation of a thin, smooth dielectric layer with fewer pinholes and enhanced device yield. In particular embodiments, the dielectric material comprises a lower-k dielectric material and a higher-k dielectric material. When deposited, the lower-k dielectric material and the higher-k dielectric material form separate phases.
摘要:
A small molecule semiconductor of Formula (I): wherein R1, R2, R3 and R4 are independently selected from a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted ethynyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group, an alkoxy group, an alkylthio group, an alkylsilyl group, a cyano group, and a halogen atom, wherein n is 1 or 2, and wherein X is independently S or
摘要:
Surface control apparatuses including an imaging member having a charge retentive surface for developing an electrostatic latent image thereon. The imaging member including a substrate, a photoconductive layer disposed on the substrate, and a surface control (SC) layer disposed on the outer surface of the imaging member. Image forming apparatuses having such surface control apparatuses installed and methods of reducing print defects using such image forming apparatuses.
摘要:
An electronic device, such as a thin-film transistor, includes a semiconducting layer formed from a semiconductor composition. The semiconductor composition comprises a polymer binder and a small molecule semiconductor of Formula (I): wherein R1, m, n, a, b, c, and X are as described herein. Devices formed from the composition exhibit high mobility and excellent stability.
摘要:
Disclosed herein are solvent free, dry coating processes for applying a layered material such as graphene, nanoplate graphite, etc., to a substrate. The applied layered material is devoid of any dispersant and substantially uniform in thickness. Generally, a layered material precursor composition is mixed with a milling medium so that the milling medium is coated with the layered material. The substrate is then contacted with the coated milling medium. The layered material on the milling medium transfers to the substrate to form a coating on the substrate. Such processes may be especially useful for applying conductive films onto a polymeric substrate without the need for additives such as a surfactant or a polymeric binder.
摘要:
A process for preparing a palladium nanoparticle ink comprises reacting a reaction mixture comprising a palladium salt, a stabilizer, a reducing agent, and an optional solvent to directly form the palladium nanoparticle ink. During the formation of the palladium nanoparticle ink, the palladium nanoparticles are not isolated from the reaction mixture.
摘要:
Electronic devices, such as organic thin film transistors, with improved mobility are disclosed. The semiconducting layer comprises layers or striations of an organic semiconductor and graphene, including alternating layers/striations of such materials. The organic semiconductor and graphene layers interact well together because both materials form lamellar sheets. The presence of graphene enhances mobility by correcting molecular packing defects in the organic semiconductor layers, and the conductivity of graphene can be controlled. Finally, both materials are flexible, allowing for flexible semiconductor layers and transistors.