Abstract:
An anti-lock brake control system for motor vehicle which can determine vibrations of wheel speed brought about by rough-road condition and judder phenomenon by detecting a torque applied to a driving shaft of the motor vehicle in association with driving wheels without need for estimating a coefficient of friction of a road surface, to thereby improve and enhance the performance of the anti-lock brake control for the motor vehicle. Whether vibration of the driving wheel is brought about by a judder phenomenon or by a rough-road condition is decided on the basis of predetermined relations between the vibration state of the driving wheel and that of the torsion torque applied to the driving shaft.
Abstract:
An anti-lock brake control system for a motor in which influence of vibration of wheel driving shafts occurring upon braking in the state where the wheels (1a, 1b) are operatively connected to a prime mover such as an internal combustion engine is suppressed to thereby enhance the braking performance of the system. Rotation speed (Vw) of each of the driving wheels (1a to 1d) of the motor vehicle is detected for determining wheel acceleration (Gw). A torsion torque (Tt) applied to a wheel drive shaft is detected. The wheel acceleration (Gw) is corrected with the torsion torque (Tt) for determining a corrected acceleration (Gc). The brake application pressure is controlled in dependence on combinations of two variables, i.e., the corrected acceleration (Gc) and the wheel acceleration (Gw). Owing to detection of the torsion torque (Tt), not only the influence of the vibration of the wheel (1a to 1d) due to the torsion torque (Tt) but also a delay involved in the detection of the torsion torque (Tt) can be taken into consideration in the anti-lock brake control.
Abstract:
An apparatus for preventing a brake force from increasing in excess upon starting of an anti-lock brake control for enhancing initial brake performance of an anti-lock brake control system. Rotation speed of each of wheels is detected, and wheel acceleration is determined. Further, a corrected acceleration is determined by correcting the wheel acceleration with a torsion torque detected from a driving shaft. In dependence on the statuses of the wheel acceleration and the corrected acceleration, a rate at which the brake force is increased is modified. Enhanced brake performance in the initial control phase can be ensured when the motor vehicle is running on a road exhibiting high friction coefficient while stability of the motor vehicle running on a road of low friction can be realized. Besides, even when difference frictions act on left and right wheels, the motor vehicle is protected against yawing moment.
Abstract:
An increase in the number of signal lines of a control apparatus for controlling devices of an automobile can be prevented and safety of the automobile can be secured. An in-vehicle communication system includes an input DHM that obtains device data from an input device, a BCM that generates control data for controlling an output device based on a value of the device data, and an output DHM that controls the output device according to the control data. The input DHM is composed of duplexed input control blocks, duplexed input shared memories, and an input NW control block. The BCM is composed of a BCM_NW control block, duplexed BCM shared memories for different intended uses, and duplexed arithmetic blocks. The output DHM is composed of an output NW control block, duplexed output shared memories, duplexed output control blocks, and a matching circuit.
Abstract:
An increase in the number of signal lines of a control apparatus for controlling devices of an automobile can be prevented and safety of the automobile can be secured. An in-vehicle communication system includes an input DHM that obtains device data from an input device, a BCM that generates control data for controlling an output device based on a value of the device data, and an output DHM that controls the output device according to the control data. The input DHM is composed of duplexed input control blocks, duplexed input shared memories, and an input NW control block. The BCM is composed of a BCM_NW control block, duplexed BCM shared memories for different intended uses, and duplexed arithmetic blocks. The output DHM is composed of an output NW control block, duplexed output shared memories, duplexed output control blocks, and a matching circuit.