摘要:
The present invention discloses a network node (100) for multi-user scheduling involving retransmission. The network node comprises a receiver (110) adapted to receive channel quality indicator (CQI) report from a user equipment (UE), an adjuster (120) adapted to adjust signal to interference and noise ratio (SINR) derived from the CQI report to obtain SINR for retransmission, a combiner (130) adapted to combine SINR for initial transmission and SINR for one or a plurality of retransmission to obtain effective SINR, and a scheduler (140) adapted to perform multi-user scheduling on the basis of priority metric derived from the effective SINR. The present invention improves multi-user scheduling by taking HARQ combining gain into account. Instantaneous throughput as well as priority metric can be accurately measured, because SINR from not only channel quality (e.g. CQI) but also HARQ processing gain are both included.
摘要:
The invention relates to a method 20 in a base station 2 for determining a transmission rank. The base station 2 controls two or more transmit antenna ports 3a, 3b for supporting a multi-antenna transmission mode and for transmission of data on a channel for communication with a user equipment 4. The method 20 comprises receiving 21 a rank indicator from a user equipment 4, the rank indicator indicating the number of spatial multiplexing layers recommended by the user equipment 4, and determining 22 the transmission rank based on a channel imbalance factor CIF, wherein the channel imbalance factor CIF quantifies a difference in receive power of the two or more transmit antenna ports 3a, 3b. The invention also relates to a base station, methods in user equipment, user equipment, computer programs, and computer program products.
摘要:
The invention relates to a method 20 in a base station 2 for determining a transmission rank. The base station 2 controls two or more transmit antenna ports 3a, 3b for supporting a multi-antenna transmission mode and for transmission of data on a channel for communication with a user equipment 4. The method 20 comprises receiving 21 a rank indicator from a user equipment 4, the rank indicator indicating the number of spatial multiplexing layers recommended by the user equipment 4, and determining 22 the transmission rank based on a channel imbalance factor CIF, wherein the channel imbalance factor CIF quantifies a difference in receive power of the two or more transmit antenna ports 3a, 3b. The invention also relates to a base station, methods in user equipment, user equipment, computer programs, and computer program products.
摘要:
The present invention discloses a network node (100) for multi-user scheduling involving retransmission. The network node comprises a receiver (110) adapted to receive channel quality indicator (CQI) report from a user equipment (UE), an adjuster (120) adapted to adjust signal to interference and noise ratio (SINR) derived from the CQI report to obtain SINR for retransmission, a combiner (130) adapted to combine SINR for initial transmission and SINR for one or a plurality of retransmission to obtain effective SINR, and a scheduler (140) adapted to perform multi-user scheduling on the basis of priority metric derived from the effective SINR. The present invention improves multi-user scheduling by taking HARQ combining gain into account. Instantaneous throughput as well as priority metric can be accurately measured, because SINR from not only channel quality (e.g. CQI) but also HARQ processing gain are both included.
摘要:
Devices and methods for improving performance in a network with geographically separated antenna ports based on determining arid reporting reference signal power from a communication device to a base station are provided. In one aspect, the difference between received reference signal power values is used in determining a reported reference signal power value, such as reference signal received power (RSRP) in a Multiple-Input Multiple-Output (MIMO) network including geographically separated antenna ports transmitting on cell-specific reference signal (CBS) ports 0 and 1. Devices and methods for measuring and reporting per-port reference signal power values are provided.
摘要:
Devices and methods for improving performance in a network with geographically separated antenna ports based on determining arid reporting reference signal power from a communication device to a base station are provided. In one aspect, the difference between received reference signal power values is used in determining a reported reference signal power value, such as reference signal received power (RSRP) in a Multiple-Input Multiple-Output (MIMO) network including geographically separated antenna ports transmitting on cell-specific reference signal (CBS) ports 0 and 1. Devices and methods for measuring and reporting per-port reference signal power values are provided.
摘要:
A first radio network node (110) and a method therein for measuring interference as well as a second radio network node (120) and a method therein for enabling the first radio network node to measure interference are disclosed. The first radio network node (110) obtains (201) configuration information for indicating a designated subframe in which a reference signal for measurement of the interference is to be transmitted by the second radio network node (120). The second radio network node (120) obtains (202) configuration information for configuring a designed subframe for transmission of a reference signal. The first radio network node (110) receives (205), in the designated subframe indicated by the configuration information, the reference signal transmitted by the second radio network node (120). The first radio network node (110) determines (206) a value of the interference based on the reference signal.
摘要:
A first radio network node (110) and a method therein for measuring interference as well as a second radio network node (120) and a method therein for enabling the first radio network node to measure interference are disclosed. The first radio network node (110) obtains (201) configuration information for indicating a designated subframe in which a reference signal for measurement of the interference is to be transmitted by the second radio network node (120). The second radio network node (120) obtains (202) configuration information for configuring a designed subframe for transmission of a reference signal. The first radio network node (110) receives (205), in the designated subframe indicated by the configuration information, the reference signal transmitted by the second radio network node (120). The first radio network node (110) determines (206) a value of the interference based on the reference signal.
摘要:
According to the disclosure, there is provided a method for the UE to mitigate Cell-specific Reference Signal (CRS) interference (not only the other interference cells' CRS interference but also the serving cell's CRS interference) during ePDCCH/PDSCH demodulation. In one non-limiting embodiment, a CRS interference mitigation method may include steps of: determining CRS having been configured is not serving cell's CRS; and mitigating interference originating from the serving cell's CRS by referring to serving cell's CRS configuration. The present disclosure also relates to a UE for implementing the above CRS interference mitigation method.
摘要:
Downlink control information (DCI) extensions to support 3GPP Rel-10 functionalities comprise minimal extensions of DCI format 2B. In some embodiments, only two extra bits (20) are introduced to signal rank up to eight, by reusing the Scrambling Identity bit (16) while at the same time supporting different MU-MIMO dimensioning for the important cases of rank-1 and rank-2. This new DCI format can potentially support not only single cell downlink transmission but also some other Rel-10 functionalities, e.g. CoMP or relaying/HetNet.