Abstract:
Methods are disclosed for fabricating spring structures that minimize helical twisting by reducing or eliminating stress anisotropy in the thin films from which the springs are formed through manipulation of the fabrication process parameters and/or spring material compositions. In one embodiment, isotropic internal stress is achieved by manipulating the fabrication parameters (i.e., temperature, pressure, and electrical bias) during spring material film formation to generate the tensile or compressive stress at the saturation point of the spring material. Methods are also disclosed for tuning the saturation point through the use of high temperature or the incorporation of softening metals. In other embodiments, isotropic internal stress is generated through randomized deposition (e.g., pressure homogenization) or directed deposition techniques (e.g., biased sputtering, pulse sputtering, or long throw sputtering). Cluster tools are used to separate the deposition of release and spring materials.
Abstract:
A light-producing device integrated with a power monitoring system include a light-producing device from which light is emitted in wavelengths that can range from approximately 700 nm to approximately 3 microns. A semi-transparent sensor is located such that at least a portion of the light emitted passes through the semi-transparent sensor and at least a portion of light is absorbed by the semi-transparent sensor. The semi-transparent sensor is configured to be semi-transparent at wavelengths that can range from 700 nm to 3 microns. The semi-transparent sensor may also be used with an external light source, for example with fiber-optic cables.