Abstract:
A micro-electromechanical fluid ejector including a substrate having an insulating layer thereon; a conductor formed on said insulating layer; a membrane adjacent to said conductor, said membrane having a corrugated, multi-layer structure for added rigidity; and an actuator chamber formed between said membrane and said conductor, said membrane flexing toward said conductor when a voltage bias is applied thereto.
Abstract:
A structure for a micro-device is fabricated by forming: a first layer of sacrificial material, a layer of structural material over the first sacrificial material layer, a second layer of sacrificial material over the structural material layer and a protective layer over the second sacrificial material layer. A release etch is used to remove the first and second sacrificial material layers at approximately the same rate. A structural feature may also be fabricated by forming: a first layer of a first material; a layer of structural material over the first layer of the first material; at least one cut in the structural material layer; and, a first layer of a sacrificial material, different from the first material, over the structural material layer such that an interface is created between the first layer of the sacrificial material and the first layer of the first material at the at least one cut.
Abstract:
A method for fabricating a membrane having a corrugated, multi-layer structure, comprising the steps of: providing a substrate having an insulator layer on the top surface of the substrate, a conductive layer on the insulator layer, a sacrificial layer on said conductive layer, and a second conductive layer; patterning a series of holes the second conductive layer to allow release etchant to have access to a second sacrificial layer; depositing the second sacrificial layer onto said second conductive layer so that the series of holes are filled with the second sacrificial layer; patterning the second sacrificial layer with a radial and/or concentric grid pattern so that a third conductive layer when deposited will form the support structure and top portion of the corrugated structure; depositing the third conductive layer so that the grid pattern is filled in and is in contact with the second conductive layer; removing the first and second sacrificial layer by immersing the device in a release etchant.