Abstract:
Methods and systems for bootstrapping an OCR engine for license plate recognition. One or more OCR engines can be trained utilizing purely synthetically generated characters. A subset of classifiers, which require augmentation with real examples, along how many real examples are required for each, can be identified. The OCR engine can then be deployed to the field with constraints on automation based on this analysis to operate in a “bootstrapping” period wherein some characters are automatically recognized while others are sent for human review. The previously determined number of real examples required for augmenting the subset of classifiers can be collected. Each subset of identified classifiers can then be retrained as the number of real examples required becomes available.
Abstract:
Methods, systems and processor-readable media for adaptive character segmentation in an automatic license plate recognition application. A region of interest can be identified in an image of a license plate acquired via an automatic license plate recognition engine. Characters in the image with respect to the region of interest can be segmented using a histogram projection associated with particular segmentation threshold parameters. The characters in the image can be iteratively validated if a minimum number of valid characters is determined based on the histogram projection and the particular segmentation threshold parameters to produce character images sufficient to identify the license plate.
Abstract:
Methods and systems for bootstrapping an OCR engine for license plate recognition. One or more OCR engines can be trained utilizing purely synthetically generated characters. A subset of classifiers, which require augmentation with real examples, along how many real examples are required for each, can be identified. The OCR engine can then be deployed to the field with constraints on automation based on this analysis to operate in a “bootstrapping” period wherein some characters are automatically recognized while others are sent for human review. The previously determined number of real examples required for augmenting the subset of classifiers can be collected. Each subset of identified classifiers can then be retrained as the number of real examples required becomes available.
Abstract:
Methods, systems and processor-readable media for adaptive character segmentation in an automatic license plate recognition application. A region of interest can be identified in an image of a license plate acquired via an automatic license plate recognition engine. Characters in the image with respect to the region of interest can be segmented using a histogram projection associated with particular segmentation threshold parameters. The characters in the image can be iteratively validated if a minimum number of valid characters is determined based on the histogram projection and the particular segmentation threshold parameters to produce character images sufficient to identify the license plate.