Adaptive character segmentation method and system for automated license plate recognition
    2.
    发明授权
    Adaptive character segmentation method and system for automated license plate recognition 有权
    自动牌照识别的自适应字符分割方法和系统

    公开(公告)号:US09042647B2

    公开(公告)日:2015-05-26

    申请号:US13911448

    申请日:2013-06-06

    CPC classification number: G06K9/00624 G06K9/325 G06K9/34 G06K2209/15

    Abstract: Methods, systems and processor-readable media for adaptive character segmentation in an automatic license plate recognition application. A region of interest can be identified in an image of a license plate acquired via an automatic license plate recognition engine. Characters in the image with respect to the region of interest can be segmented using a histogram projection associated with particular segmentation threshold parameters. The characters in the image can be iteratively validated if a minimum number of valid characters is determined based on the histogram projection and the particular segmentation threshold parameters to produce character images sufficient to identify the license plate.

    Abstract translation: 用于自动车牌识别应用中的自适应角色分割的方法,系统和处理器可读介质。 可以通过自动车牌识别引擎获取的牌照的图像中识别感兴趣的区域。 可以使用与特定分割阈值参数相关联的直方图投影来分割相关于感兴趣区域的图像中的字符。 如果基于直方图投影和特定分割阈值参数来确定最小数量的有效字符,则可以迭代地验证图像中的字符,以产生足以识别牌照的字符图像。

    ADAPTIVE CHARACTER SEGMENTATION METHOD AND SYSTEM FOR AUTOMATED LICENSE PLATE RECOGNITION
    3.
    发明申请
    ADAPTIVE CHARACTER SEGMENTATION METHOD AND SYSTEM FOR AUTOMATED LICENSE PLATE RECOGNITION 有权
    自适应牌照识别自适应字符分割方法及系统

    公开(公告)号:US20140363052A1

    公开(公告)日:2014-12-11

    申请号:US13911448

    申请日:2013-06-06

    CPC classification number: G06K9/00624 G06K9/325 G06K9/34 G06K2209/15

    Abstract: Methods, systems and processor-readable media for adaptive character segmentation in an automatic license plate recognition application. A region of interest can be identified in an image of a license plate acquired via an automatic license plate recognition engine. Characters in the image with respect to the region of interest can be segmented using a histogram projection associated with particular segmentation threshold parameters. The characters in the image can be iteratively validated if a minimum number of valid characters is determined based on the histogram projection and the particular segmentation threshold parameters to produce character images sufficient to identify the license plate.

    Abstract translation: 用于自动车牌识别应用中自适应角色分割的方法,系统和处理器可读介质。 可以通过自动车牌识别引擎获取的牌照的图像中识别感兴趣的区域。 可以使用与特定分割阈值参数相关联的直方图投影来分割相关于感兴趣区域的图像中的字符。 如果基于直方图投影和特定分割阈值参数来确定最小数量的有效字符,则可以迭代地验证图像中的字符,以产生足以识别牌照的字符图像。

    METHOD AND SYSTEM FOR ESTIMATING GAZE DIRECTION OF VEHICLE DRIVERS
    4.
    发明申请
    METHOD AND SYSTEM FOR ESTIMATING GAZE DIRECTION OF VEHICLE DRIVERS 有权
    估计车辆行驶方向和方法的方法和系统

    公开(公告)号:US20150116493A1

    公开(公告)日:2015-04-30

    申请号:US14274315

    申请日:2014-05-09

    CPC classification number: G06K9/00845 G06K9/00281 G06K9/6277

    Abstract: Methods and systems for continuously monitoring the gaze direction of a driver of a vehicle over time. Video is received, which is captured by a camera associated with, for example, a mobile device within a vehicle, the camera and/or mobile device mounted facing the driver of the vehicle. Frames can then be extracted from the video. A facial region can then be detected, which corresponds to the face of the driver within the extracted frames. Features descriptors can then be computed from the facial region. A gaze classifier derived from the vehicle, the driver, and the camera can then be applied, wherein the gaze classifier receives the feature descriptors as inputs and outputs at least one label corresponding to one or more predefined finite number of gaze classes to identify the gaze direction of the driver of the vehicle.

    Abstract translation: 随着时间的推移,持续监控车辆驾驶员凝视方向的方法和系统。 接收到视频,其由与例如车辆内的移动设备相关联的摄像机捕获,相机和/或移动设备面向车辆驾驶员安装。 然后可以从视频中提取帧。 然后可以检测到面部区域,其对应于所提取的帧内的驾驶员的脸部。 然后可以从面部区域计算特征描述符。 然后可以应用从车辆,驾驶员和照相机得到的注视分类器,其中注视分类器接收特征描述符作为输入,并且输出与一个或多个预定义的有限数量的注视类别对应的至少一个标签,以识别注视 车辆司机的方向。

    Method and system for estimating gaze direction of vehicle drivers

    公开(公告)号:US09881221B2

    公开(公告)日:2018-01-30

    申请号:US14274315

    申请日:2014-05-09

    CPC classification number: G06K9/00845 G06K9/00281 G06K9/6277

    Abstract: Methods and systems for continuously monitoring the gaze direction of a driver of a vehicle over time. Video is received, which is captured by a camera associated with, for example, a mobile device within a vehicle, the camera and/or mobile device mounted facing the driver of the vehicle. Frames can then be extracted from the video. A facial region can then be detected, which corresponds to the face of the driver within the extracted frames. Features descriptors can then be computed from the facial region. A gaze classifier derived from the vehicle, the driver, and the camera can then be applied, wherein the gaze classifier receives the feature descriptors as inputs and outputs at least one label corresponding to one or more predefined finite number of gaze classes to identify the gaze direction of the driver of the vehicle.

    Detecting multi-object anomalies utilizing a low rank sparsity model
    6.
    发明授权
    Detecting multi-object anomalies utilizing a low rank sparsity model 有权
    使用低秩稀疏模型检测多物体异常

    公开(公告)号:US09317780B2

    公开(公告)日:2016-04-19

    申请号:US14326635

    申请日:2014-07-09

    CPC classification number: G06K9/6249 G06K9/00771

    Abstract: Methods and systems for detecting anomalies in transportation related video footage. In an offline training phase, receiving video footage of a traffic location can be received. Also, in an offline training phase, event encodings can be extracted from the video footage and collected or compiled into a training dictionary. One or more input video sequences captured at the traffic location or a similar traffic location can be received in an online detection phase. Then, an event encoding corresponding to the input video sequence can be extracted. The event encoding can be reconstructed with a low rank sparsity prior model applied with respect to the training dictionary. The reconstruction error between actual and reconstructed event encodings can then be computed in order to determine if an event thereof is anomalous by comparing the reconstruction error with a threshold.

    Abstract translation: 检测交通相关影像异常的方法和系统。 在离线训练阶段,可以接收到接收到交通位置的录像带。 此外,在离线训练阶段,可以从视频素材中提取事件编码,并将其收集或编译成训练词典。 在在线检测阶段可以接收在业务位置或类似业务位置处捕获的一个或多个输入视频序列。 然后,可以提取与输入视频序列相对应的事件编码。 可以使用相对于训练词典应用的低秩稀疏性先验模型来重构事件编码。 然后可以计算实际和重建事件编码之间的重建误差,以便通过将重建误差与阈值进行比较来确定其事件是否是异常的。

    DETECTING MULTI-OBJECT ANOMALIES UTILIZING A LOW RANK SPARSITY MODEL
    7.
    发明申请
    DETECTING MULTI-OBJECT ANOMALIES UTILIZING A LOW RANK SPARSITY MODEL 有权
    检测使用低排名空间模型的多对象异常

    公开(公告)号:US20150110357A1

    公开(公告)日:2015-04-23

    申请号:US14326635

    申请日:2014-07-09

    CPC classification number: G06K9/6249 G06K9/00771

    Abstract: Methods and systems for detecting anomalies in transportation related video footage. In an offline training phase, receiving video footage of a traffic location can be received. Also, in an offline training phase, event encodings can be extracted from the video footage and collected or compiled into a training dictionary. One or more input video sequences captured at the traffic location or a similar traffic location can be received in an online detection phase. Then, an event encoding corresponding to the input video sequence can be extracted. The event encoding can be reconstructed with a low rank sparsity prior model applied with respect to the training dictionary. The reconstruction error between actual and reconstructed event encodings can then be computed in order to determine if an event thereof is anomalous by comparing the reconstruction error with a threshold.

    Abstract translation: 检测交通相关影像异常的方法和系统。 在离线训练阶段,可以接收到接收到交通位置的录像带。 此外,在离线训练阶段,可以从视频素材中提取事件编码,并将其收集或编译成训练词典。 在在线检测阶段可以接收在业务位置或相似的业务位置处捕获的一个或多个输入视频序列。 然后,可以提取与输入视频序列相对应的事件编码。 可以使用相对于训练词典应用的低秩稀疏性先验模型来重构事件编码。 然后可以计算实际和重建事件编码之间的重建误差,以便通过将重建误差与阈值进行比较来确定其事件是否是异常的。

Patent Agency Ranking