Abstract:
A process for the preparation of a toner by mixing a colorant, a latex, optionally a wax and a polyamine salt coagulant to form toner size aggregates, wherein the polyamine salt is then neutralized or converted to an amide or hydrolyzed to an acid by the introduction of a base followed by a pH reduction with an acid to enable rapid coalescence or fusion of the aggregates.
Abstract:
A MEMS system including a fixed electrode and a suspended moveable electrode that is controllable over a wide range of motion. In traditional systems where an fixed electrode is positioned under the moveable electrode, the range of motion is limited because the support structure supporting the moveable electrode becomes unstable when the moveable electrode moves too close to the fixed electrode. By repositioning the fixed electrode from being directly underneath the moving electrode, a much wider range of controllable motion is achievable. Wide ranges of controllable motion are particularly important in optical switching applications.
Abstract:
Methods and systems for separating encapsulated particles from empty shells. One method involves providing a mixture including at least one dipolar particle encapsulated in a shell and at least one shell which does not encapsulate a dipolar particle. The mixture is positioned in a spatially inhomogeneous electric or magnetic field and at least one encapsulated dipolar particle is isolated from the mixture.
Abstract:
A MEMS system including a fixed electrode and a suspended moveable electrode that is controllable over a wide range of motion. In traditional systems where an fixed electrode is positioned under the moveable electrode, the range of motion is limited because the support structure supporting the moveable electrode becomes unstable when the moveable electrode moves too close to the fixed electrode. By repositioning the fixed electrode from being directly underneath the moving electrode, a much wider range of controllable motion is achievable. Wide ranges of controllable motion are particularly important in optical switching applications.
Abstract:
Disclosed is a process for depositing marking material onto a substrate which comprises (a) providing a propellant to a printhead, said printhead having defined therein at least one channel, each channel having an inner surface and an exit orifice with a width no larger than about 250 microns through which the propellant can flow, said propellant flowing through each channel, thereby forming a propellant stream having kinetic energy, each channel directing the propellant stream toward the substrate, the inner surface of each channel having thereon a conductive polymer coating; and (b) controllably introducing a particulate marking material into the propellant stream in each channel, wherein the kinetic energy of the propellant stream causes the particulate marking material to impact the substrate.