Abstract:
The present invention relates to a novel method for preparing a catalyst of the formula (1), WOx wherein, W represents tungsten atom, O represents oxygen atom x represents a value determined by oxidative state of W, for partial oxidation of methylbenzenes, the method comprising: (a) a step of preparing tungsten oxide slurry by wet milling; (b) a step of supporting the slurry obtained in the step (a) on fire-resistance inorganic carrier by impregnation; (c) a step of drying the catalyst obtained in the step (b); and (d) a step of calcining the dried catalyst obtained in the step (c), and can reduce the reaction temperature on the basis of equivalent yield in the preparation of corresponding aromatic aldehyde from methylbenzenes since the catalyst has increased the surface areas compared to the conventional one, and thus has high conversion rate.
Abstract:
A catalyst for gas phase oxidation of methylbenzenes in the presence of molecular oxygen to produce corresponding aromatic aldehydes, a method for preparing the catalyst, and a method for producing aromatic aldehydes from methylbenzenes by using the catalyst. The catalyst comprises a compound represented by the following formula (1): WaXbYcOx (1) wherein W represents a tungsten atom, X represents one or more alkali metals selected from the group consisting of Li, Na, K, Rb, and Cs, Y represents one or more elements selected from the group consisting of Fe, Co, Ni, Cu, Mn, Re, Cr, V, Nb, Ti, Zr, Zn, Cd, Y, La, Ce, B, Al, Sn, Mg, Ca, Sr, and Ba, O stands for an oxygen atom, and the ratio of a:b:c is 12:0.001˜1:0˜5.
Abstract:
A catalyst for gas phase oxidation of methylbenzenes in the presence of molecular oxygen to produce corresponding aromatic aldehydes, a method for preparing the catalyst, and a method for producing aromatic aldehydes from methylbenzenes by using the catalyst. The catalyst comprises a compound represented by the following formula (1): WaXbYcOx (1) wherein W represents a tungsten atom, X represents one or more alkali metals selected from the group consisting of Li, Na, K, Rb, and Cs, Y represents one or more elements selected from the group consisting of Fe, Co, Ni, Cu, Mn, Re, Cr, V, Nb, Ti, Zr, Zn, Cd, Y, La, Ce, B, Al, Sn, Mg, Ca, Sr, and Ba, O stands for an oxygen atom, and the ratio of a:b:c is 12:0.001˜1:0˜5.
Abstract:
The present invention relates to a novel method for preparing a catalyst for partial oxidation of methylbenzenes, comprising, (a) a step of preparing a solution or slurry of the compounds comprising tungsten; (b) a step of supporting the solution or slurry obtained in the step (a) on inorganic carrier; (c) a step of drying the catalyst obtained in the step (b); and (d) a step of calcining the dried catalyst obtained in the step (c), characterized in that the ratio of the pore volume of inorganic carrier and the volume of the solution or slurry in the step (b) is 1:0.9˜1.1, and the catalyst provides superior aromatic aldehydes selectivity to those prepared by the conventional impregnation or heat evaporation method over a wide range of conversion rate.
Abstract:
The present invention relates to a method for preparing an aromatic dialdehyde, comprising, a) a step of gas phase oxidation reaction for preparing aromatic dialdehyde from dimethyl benzene; b) a step of separation for selectively recovering crude aromatic dialdehyde of molten phase from the reaction product of the step (a); and c) a step of purification for obtaining highly pure aromatic dialdehyde by purifying said crude aromatic dialdehyde, and a manufacturing system used for the preparation method. The method for preparation of the aromatic dialdehyde according to the present invention is simple, effective, and advantageous in that highly pure aromatic dialdehyde can be continuously prepared.
Abstract:
The present invention provides a method for producing a catalyst comprising an inert carrier an a mixed metal oxide as a catalytically active component supported on the inert carrier, the method comprising the steps of: a) adding organic acid(s) into solvent(s) and salt of each metal component which will form a mixed metal oxide, to prepare a catalyst precursor solution for the mixed metal oxide; b) adjusting pH of the catalyst precursor solution using a basic solution; c) containing the catalyst precursor solution for the mixed metal oxide, of which the pH is adjusted, on the inert carrier, d) removing the solvent(s); and e) calcining the resultant from step d. The catalyst produced by the present method has improved reproducibility, activity and yield, while maintaining a high selectivity.
Abstract:
A liquid crystal display device includes a gate line and a data line crossing each other to define a pixel region, a thin film transistor positioned at the crossing of the gate line and the data line, a common line extending in parallel to the gate line, a common electrode connected to the common line and having common finger portions extending into the pixel region, and a pixel electrode connected to a drain electrode of the thin film transistor and having pixel finger portions extending into the pixel region and overlapping the common line.
Abstract:
An In-Plane Switching (IPS) mode LCD device is disclosed, to prevent the distortion of transverse electric field in a method of decreasing a line width of a common electrode overlapped with a pixel electrode, which includes intersecting gate and data lines that define a pixel region; thin film transistors at an intersection point of the gate and data lines; pixel electrodes formed in the pixel region and connected with a thin film transistor; and common electrodes arranged between the pixel electrodes of the pixel region; wherein, the outermost common electrode, formed adjacent to the data line, is partially overlapped with the pixel electrode, and the line width of the predetermined portion of the outermost common electrode overlapped with the pixel electrode is smaller than the remaining portions of the outermost common electrode.
Abstract:
In an IPS mode LCD device and method, a plurality of sub-blocks are utilized to maintain a maximum transmittance even when a voltage above a predetermined value is applied to the device. The IPS mode LCD device includes a common electrode including a plurality of first segments and a plurality of second segments to define a plurality of blocks, wherein the plurality of first segments are formed substantially parallel to the gate line in the pixel region, and the plurality of second segments are formed substantially parallel to the data line, and connected to the first segments; and a pixel electrode including a plurality of third segments and at least one fourth segment, and being connected with a drain electrode of the thin film transistor, wherein each of the third segments is positioned between the first segments, and the at least one fourth segment connects the third segments.
Abstract:
The present invention relates to a method for preparing a catalyst for partial oxidation of propylene, particularly a method for preparing a catalyst for preparing an acrylic acid, using an organic acid such as a citric acid, maleic acid and oxalic acid. The complex oxide catalyst according to the invention, when used in the gas phase catalytic oxidation of propylene, may produce acrolein in high yield.