Abstract:
A manually operated document scanner and methods of operation and use are disclosed. The document scanner includes a document bed having a document positioning surface. The document scanner also includes a scanner module slidably attached to the document bed. The scanner module has a magnetic character reader, a first magnet placed along a leading edge of the magnetic character reader in a first direction of travel of the scanner module, and a second magnet placed along a leading edge of the magnetic character reader in a second direction of travel of the scanner module opposite to the first direction of travel.
Abstract:
A method and configuration for interprocessor communication provides reduced latency and complexity, as well as the ability to simultaneously transfer different types of data. A multi-channel interface is disposed between a slave processor and a master processor, wherein the multi-channel interface has a low-latency channel for transferring low-latency information and a high-throughput channel for transferring high-throughput information. The master processor interrupts the slave processor when the master processor has control information to transfer to the slave processor. Interrupt driven notification and the multi-channel interface provide reliable, high-speed communication between dissimilar processors.
Abstract:
An apparatus is disclosed. The apparatus includes a document processor and electronics connected to the document processor. The electronics includes a document sensor system and means for determining a document processing situation of a plurality of document processing situations. The document sensor system is connected to the means. The plurality of document processing situations include a single document situation and a double document situation. The double document situation includes a partially-overlapped, double document situation and a completely overlapped, double document situation. A method is also disclosed.
Abstract:
A method for processing backwards documents in a document processing system involves a reverse recognition algorithm. The document processing system includes a magnetic ink character recognition (MICR) reader. A waveform is determined for a magnetic ink character string on a document. A forward recognition algorithm is applied to compare the determined waveform to a set of known character profiles. In a case where the magnetic ink character string remains unrecognized after application of the forward recognition algorithm, a reverse recognition algorithm is applied to compare the determined waveform to the set of known character profiles. The reverse recognition algorithm considers the determined waveform as resulting from the document being oriented backwards when passing though the magnetic ink character recognition reader when comparing the waveform to the set of known character profiles.
Abstract:
A document processor and method of use are disclosed. In one aspect, a document processor includes a path of travel of a document, a magnetic ink character reader, and an image scanner. The magnetic ink character reader is located along the path of travel and positioned to read magnetic characters printed on a document passing along the path of travel. The image scanner is located along the path of travel and oriented to capture an image of a surface of a document passing along the path of travel. The document processor also includes at least one drive mechanism located along the path of travel and configured to guide a document along the path of travel in a first direction during operation of the magnetic ink character reader, and further configured to guide the document along the path of travel in a second direction opposite the first direction during operation of the image scanner. The drive mechanism is configured to guide the document along the path of travel in the first direction at a first speed, and guide the document along the path of travel in a second direction at a second speed.
Abstract:
A document processor and method of use are disclosed. In one aspect, a document processor includes a path of travel of a document, a magnetic ink character reader, and an image scanner. The magnetic ink character reader is located along the path of travel and positioned to read magnetic characters printed on a document passing along the path of travel. The image scanner is located along the path of travel and oriented to capture an image of a surface of a document passing along the path of travel. The document processor also includes at least one drive mechanism located along the path of travel and configured to guide a document along the path of travel in a first direction during operation of the magnetic ink character reader, and further configured to guide the document along the path of travel in a second direction opposite the first direction during operation of the image scanner. The drive mechanism is configured to guide the document along the path of travel in the first direction at a first speed, and guide the document along the path of travel in a second direction at a second speed.
Abstract:
A document scanner and associated feedback mechanism are disclosed. The document scanner includes a document bed including a document positioning surface, and a scanning module slidably connected to the document bed, the scanning module manually movable across the document positioning surface. The document scanner further includes a feedback mechanism arranged to receive information about a speed of movement of the scanning module, and output a feedback signal to a user of the document scanner.
Abstract:
A document scanner and associated feedback mechanism are disclosed. The document scanner includes a document bed including a document positioning surface, and a scanning module slidably connected to the document bed, the scanning module manually movable across the document positioning surface. The document scanner further includes a feedback mechanism arranged to receive information about a speed of movement of the scanning module, and output a feedback signal to a user of the document scanner.
Abstract:
A method for linking front and rear images in a document processing system involves linking the front and rear images by a magnetic ink character code line. The document processing system includes an imaging device and a magnetic ink character recognition (MICR) reader. The method comprises capturing a first image and first MICR waveform for the front side of the document, and capturing a second image and second MICR waveform for the rear side of the document. A forward recognition algorithm is applied to the first waveform to produce a first code line. A reverse recognition algorithm is applied to the second waveform to produce a second code line. The reverse recognition algorithm considers the second waveform as resulting from the document being read from the rear side of the document when processing the second waveform.
Abstract:
A manually operated document scanner and methods of operation and use are disclosed. The document scanner includes a document bed having a document positioning surface. The document scanner also includes a scanner module slidably attached to the document bed. The scanner module has a magnetic character reader, a first magnet placed along a leading edge of the magnetic character reader in a first direction of travel of the scanner module, and a second magnet placed along a leading edge of the magnetic character reader in a second direction of travel of the scanner module opposite to the first direction of travel.