Abstract:
A spark plug, a center electrode therefore and method of construction is provided. The spark plug has a generally annular ceramic insulator extending between a terminal end and a nose end. A conductive shell surrounds at least a portion of the ceramic insulator and a ground electrode having a ground electrode sparking surface is operatively attached to the shell. An elongate center electrode has a body extending between opposite ends, wherein the body is compacted and sintered of a conductive or semi-conductive ceramic material. One of the electrode ends provides a center electrode sparking surface to provide a spark gap between the center electrode sparking surface and the ground electrode sparking surface.
Abstract:
An igniter (20) emitting an electrical field including a plurality of streamers forming a corona includes a corona enhancing tip (52) at an electrode firing end (28). The corona enhancing tip (52) includes an emitting member (58) such as a wire, layer, or sintered mass, formed of a precious metal and disposed on a base member (54). The base member (54) is formed of a nickel alloy. The emitting member (58) has a lower electrical erosion rate and chemical corrosion rate than the base member (54). The emitting member (58) presents the smallest spherical radius of the corona enhancing tip (52) at the outermost radial point (56) to concentrate the electrical field emissions and provide a consistently strong electrical field strength over time.
Abstract:
A spark plug (20) for igniting a mixture of fuel and air of an internal combustion engine comprises a center electrode (22) and a ground electrode (24). At least one of the electrodes (22, 24) includes a body portion (28, 30) formed of thermally conductive material and a firing tip (32, 34) disposed on the body portion (28, 30). The firing tip (32, 34) includes a ceramic material, providing an exposed firing surface (36, 38). The ceramic material is an electrically conductive, monolithic ceramic material. Examples of preferred ceramic materials include titanium diboride, silicon carbide, ternary carbide, and ternary nitride. The ceramic material can also include oxides, borides, nitrides, carbides, silicides, or MAX phases.
Abstract:
A heater probe assembly, a metallic glow plug assembly therewith and method of constructing the heater probe assembly is provided. The metallic glow plug assembly includes a metal shell having a through bore and a metal sheath extending between a distal end and a terminal end. The terminal end of the metal sheath is fixed in the through bore of the shell. Further, an electrode is provided having an end with a heating element attached to thereto. The heating element and end of the electrode are received in the sheath. A packing powder is disposed in the sheath about the heating element. Further, a ceramic seal has an outer surface attached to the sheath by a braze joint and an inner surface attached to the electrode by a braze joint. The ceramic seal provides a hermetic seal between the packing powder and an environment external to the sheath.
Abstract:
A monolithic, multi-layer heating element forms the high temperature tip of a glow plug assembly. The heating element includes a conductive core which is surrounded by an insulator layer, which in turn supports a resistive layer. An optional conductive jacket can surround the resistive layer. These layered components are pre-formed in prior operations and then assembled one into the other to form a precursor structure. The precursor structure is transferred to a die, where it is compressed to form a so-called green part having dimensional attributes proportional to the finished heating element. The individual layers remain substantially intact, with some boundary layer mixing possible to enhance material-to-material bonding. The green part is sintered to bond to various materials together into an essentially solid mass. Various finishing operations may be required, following which the heating element is assembled to form a glow plug.
Abstract:
A spark plug and method of construction is provided, wherein the spark plug has a generally annular ceramic insulator and a metal shell surrounding at least a portion of the insulator. A ground electrode is operatively attached to the shell, wherein the ground electrode has a ground electrode sparking surface. The spark plug further includes a center electrode having an elongate body with a center electrode sparking surface. The sparking surface of the center electrode and the ground electrode sparking surface provide a spark gap. A brazed joint bonds at least one of the insulator to the shell or the center electrode to the insulator.
Abstract:
A monolithic, multi-layer heating element forms the high temperature tip of a glow plug assembly. The heating element includes a conductive core which is surrounded by an insulator layer, which in turn supports a resistive layer. An optional conductive jacket can surround the resistive layer. These layered components are pre-formed in prior operations and then assembled one into the other to form a precursor structure. The precursor structure is transferred to a die, where it is compressed to form a so-called green part having dimensional attributes proportional to the finished heating element. The individual layers remain substantially intact, with some boundary layer mixing possible to enhance material-to-material bonding. The green part is sintered to bond to various materials together into an essentially solid mass. Various finishing operations may be required, following which the heating element is assembled to form a glow plug.
Abstract:
An igniter (20) of a corona ignition system emits a non-thermal plasma in the form of a corona (30) to ionize and ignite a fuel mixture. The igniter (20) includes an electrode (32) and a ceramic insulator (22) surrounding the electrode (32). The insulator (22) surrounds a firing end (38) of the electrode (32) and blocks the electrode (32) from exposure to the combustion chamber (28). The insulator (22) presents a firing surface (56) exposed to the combustion chamber (28) and emitting the non-thermal plasma. A plurality of electrically conducting elements (24) are disposed in a matrix (26) of the ceramic material and along the firing surface (56) of the insulator (22), such as metal particles embedded in the ceramic material or holes in the ceramic material. The electrically conducting elements (24) reduce arc discharge during operation of the igniter (20) and thus improve the quality of ignition.
Abstract:
An insulator for a spark ignition device is disclosed which includes an electrically insulating ceramic core tube having a terminal end, a firing end and an inner bore which extends along a longitudinal bore axis from the terminal end to the firing end and an electrically insulating, ceramic core nose tube having a second outer surface and a second bore where the second outer surface of said ceramic core nose tube is in nested engagement with and directly bonded to the bore of the ceramic core tube proximate the firing end. The insulator also may include a similarly nested and directly bonded shoulder tube on an outer surface of the core tube, or a nested and directly bonded mast tube on an outer surface of the core tube. The ceramics may include alumina-based ceramics, as well other suitable ceramic materials, and the tube may be made from the same ceramic compositions or different ceramic compositions. The invention also includes a method of making the nested tube, directly boded insulators by controlling shrinkage during sintering.
Abstract:
A spark plug which includes a center electrode metal shell and an insulator disposed therebetween utilizes for the insulator or ceramic with improved high temperature electrical properties which includes alumina in an amount between about 90 and about 99% by weight, a zirconium containing compound in an amount between about 0 and about 1% by weight, and an oxide mixture in an amount between about 1 and about 10% by weight. The oxide mixture includes a glass former, a network modifier and alumina in an amount between about 16% and about 40% by weight after firing, wherein the molar ratio of the glass former to the network modifier ranges between about 0.8:1 and 1.2:1. The ceramic insulator is particularly adapted for use as an insulator in a spark plug to provide improved dielectric strength and shunt resistance of greater than one 1000 megaohms at 1000 degrees Fahrenheit, so as to reduce the shunting of the spark plug and thereby improve the quality of the spark generated by the spark plug.