摘要:
A method of programming a first cell in a memory, wherein the first cell has a first S/D region and shares a second S/D region with a second cell that has a third S/D region opposite to the second S/D region. The channels of the first and the second cells are turned on, a first voltage is applied to the first S/D region, a second voltage is applied to the second S/D region and a third voltage is applied to the third S/D region. The second voltage is between the first voltage and the third voltage, and the first to third voltages make carriers flow from the third S/D region to the first S/D region and cause hot carriers in the channel of the first cell to be injected into the charge storage layer of the first cell.
摘要:
A method of programming a first cell in a memory, wherein the first cell has a first S/D region and shares a second S/D region with a second cell that has a third S/D region opposite to the second S/D region. The channels of the first and the second cells are turned on, a first voltage is applied to the first S/D region, a second voltage is applied to the second S/D region and a third voltage is applied to the third S/D region. The second voltage is between the first voltage and the third voltage, and the first to third voltages make carriers flow from the third S/D region to the first S/ID region and cause hot carriers in the channel of the first cell to be injected into the charge storage layer of the first cell.
摘要:
A reliability test method for a non-volatile memory. A relation curve of gate voltage versus read current degradation rate is obtained. The read current degradation rate of an actual gate voltage is estimated. From the relation curve, an accelerated test gate voltage and a test time corresponding to the actual gate voltage are obtained. With the accelerated test gate voltage, the test is continuously performed within the test time. Afterward, a test result of the memory is then obtained and, by the result, it is judged whether the data is valid or not. If the data is right (retained), the memory can be guarantied to have an expected lifetime; if the data is wrong (lost), the memory is judged as fails to pass the lifetime test.
摘要:
A qualification test method for a non-volatile memory includes determining a relation curve between the programming voltage and the lifetime of the memory cell. A programming voltage with respect to the memory array within the expected lifetime is estimated. According to the relation curve, the accelerating test voltage and the test time period corresponding to the programming voltage operated in the expected lifetime are computed out. The test is performed for the test time period under the accelerating test voltage. All the memory cells at the programmed state are tested to see if the original programmed state still remains. If the programmed state remains, the memory array is judged to have the life period. If the programmed state does not remain, the memory array is judged to have no the life period.
摘要:
An accelerated test for a non-volatile memory. A threshold voltage variation standard for assessment is selected. A set of negative gate bias voltages is applied to the gate terminals of the non-volatile memory to conduct the accelerated testing and obtain a test result. A curve relating lifetime and negative gate bias voltage is derived from the test result. According to the threshold voltage variation standard, the lifetime of the non-volatile memory is found. A word line negative gate bias voltage generator is coupled to a word line driver to apply a set of negative gate bias voltages to the gate terminals of programmed memory cells and conduct an accelerated testing.
摘要:
A memory device is described, including a tunnel dielectric layer over a substrate, a gate over the tunnel dielectric layer, at least one charge storage layer between the gate and the tunnel dielectric layer, two doped regions in the substrate beside the gate, and a word line that is disposed on and electrically connected to the gate and has a thickness greater than that of the gate.
摘要:
An integrated circuit includes a memory array having a plurality of memory cells arranged in rows and columns, each memory cell including two doped regions and a channel region therebetween, each pair of adjacent memory cells sharing a common doped region, each memory cell having a charge storage member over the channel region and a control gate over the charge storage member. A first word line is coupled to the memory cells in the same row, each of the memory cells designated as the Nth memory cell. Each of a plurality of bit lines is designated as the Nth bit line, the Nth bit line coupled to a doped region shared by the Nth memory cell and the (N−1)th memory cell. The integrated circuit also has a plurality of global bit lines, each of which coupled to two of the bit lines via a switch.
摘要:
A memory device includes a plurality of memory cells arranged in series in the semiconductor body, such as a NAND string, having a plurality of word lines. A selected memory cell is programmed by hot carrier injection using a boosted channel potential to establish the heating field. Boosted channel hot carrier injection can be based on blocking flow of carriers between a first side of a selected cell and a second side of the selected cell in the NAND string, boosting by capacitive coupling the first semiconductor body region to a boosted voltage level, biasing the second semiconductor body region to a reference voltage level, applying a program potential greater than a hot carrier injection barrier level to the selected cell and enabling flow of carriers from the second semiconductor body region to the selected cell to cause generation of hot carriers.
摘要:
A dynamic random access memory cell and a manufacturing method thereof are provided. First, a substrate on which a bottom oxide layer and a semiconductor layer are formed is provided. The semiconductor layer is formed on the bottom oxide layer. Next, a gate is formed on the semiconductor layer. Then, the semiconductor layer is patterned to expose a portion of the bottom oxide layer. Afterwards, an insulation layer is formed at the side walls of the semiconductor layer, wherein the height of the insulation layer is shorter than that of the semiconductor layer, so that a gap is formed between the tops of the insulation layer and the semiconductor layer. Further, a doping layer covering the insulation layer and having the same height with the semiconductor layer is formed on the bottom oxide layer. The doping layer contacts the side walls of the semiconductor layer via the gap.