Abstract:
A hearing aid includes a magnetostrictive electroactive (ME) sensor that generates an electrical signal in response to a magnetic field or a mechanical pressure. In various embodiments, the ME sensor is used for cordless charging of a rechargeable battery in the hearing aid by generating an electrical signal in response to a magnetic field generated for power transfer, magnetic sound signal reception, and/or detection of user commands by sensing a magnetic field or a pressure applied to the hearing aid.
Abstract:
In various embodiments, a system is used to provide an apparatus configured to measure sound in an ear canal of a wearer's ear at a distance from a tympanic membrane of the ear. The sound is measured and received by the apparatus to produce a signal. A frequency analysis is performed on the signal to determine output as a function of the frequency and to determine the frequency of the minima (null). Further, a distance equal to a quarter wavelength of the null frequency is calculated. A correction factor associated with the quarter wavelength is retrieved and applied to the output to generate a corrected output. An estimated sound pressure level at the tympanic membrane from the corrected output is produced.
Abstract:
The present subject matter provides systems and methods for remotely controlling a hearing assistance device, including using a personal wireless device such as a cellular telephone. One embodiment includes a communication system for controlling a hearing assistance device. The system includes a personal wireless device including a short range radio transmitter. The short range radio transmitter is programmed to transmit instructions to the hearing assistance device by conversion of inputs to the personal wireless device into control signals for the hearing assistance device using on/off keying of the short range radio transmitter.
Abstract:
The present subject matter provides method and apparatus for improved microphones sharing an acoustic volume. Some embodiments are useful for hearing assistance devices. Examples of an improved microphone module offering omnidirectional and directional microphone capsules are provided. Different mounting and interconnection embodiments are provided. Different electrical connector embodiments are discussed. Improvements in space and performance, and other efficiencies, are provided by the teachings set forth herein.
Abstract:
Disclosed herein, among other things, are methods and apparatus for mitigating foreign material buildup for hearing assistance device components. The present subject matter includes coating of at least one surface of a hearing assistance device, such as a hearing aid, with an omniphobic coating, a hydrophilic coating, or a combination of omniphobic and hydrophilic coatings designed to reduce the unwanted effects of wax, moisture and other foreign materials. In various embodiments at least one surface of a receiver with a wax trap or waxceptor in a receiver tube is coated with an omniphobic coating. In various embodiments the present subject matter includes an internal barrier disposed near a receiver in the receiver tube in addition to the wax trap or waxceptor. In various embodiments the internal barrier is coated with an omniphobic coating. In various embodiments at least one surface includes a hydrophilic coating.
Abstract:
The present subject matter of the invention relates generally to the management of electromagnetic fields in hearing assistance devices, such as hearing aids, and in particular to an insulated electromagnetic shield design for hearing assistance devices. The present disclosure includes various embodiments for electromagnetic shielding of a receiver using a magnetic shield that is electrically insulated from the receiver casing and electronics.
Abstract:
The present subject matter provides method and apparatus for improved microphones sharing an acoustic volume. Some embodiments are useful for hearing assistance devices. Examples of an improved microphone module offering omnidirectional and directional microphone capsules are provided. Different mounting and interconnection embodiments are provided. Different electrical connector embodiments are discussed. Improvements in space and performance, and other efficiencies, are provided by the teachings set forth herein.
Abstract:
The present subject matter of the invention relates generally to the management of electromagnetic fields in hearing assistance devices, such as hearing aids, and in particular to an insulated electromagnetic shield design for hearing assistance devices. The present disclosure includes various embodiments for electromagnetic shielding of a receiver using a magnetic shield that is electrically insulated from the receiver casing and electronics.
Abstract:
Disclosed herein, among other things, are methods and apparatus for mitigating foreign material buildup for hearing assistance device components. The present subject matter includes a hearing assistance device transducer barrier device configured to resist accumulation and passage of foreign materials, the barrier device comprising a plug adapted to fit within a receiver opening. In various embodiments, the plug includes a membrane that is coated with oleophobic and hydrophobic materials, the membrane adapted to include an aperture, wherein the barrier is acoustically transparent but prevents the accumulation and passage of unwanted materials. Other barriers, such as a plug with a plurality of holes are described. In some embodiments a molded plastic plug including a plurality of holes provides the barrier.
Abstract:
Disclosed herein, among other things, are methods and apparatus for mitigating foreign material buildup for hearing assistance device components. The present subject matter includes a hearing assistance device transducer barrier device configured to resist accumulation and passage of foreign materials, the barrier device comprising a plug adapted to fit within a receiver opening. In various embodiments, the plug includes a membrane that is coated with oleophobic and hydrophobic materials, the membrane adapted to include an aperture, wherein the barrier is acoustically transparent but prevents the accumulation and passage of unwanted materials. Other barriers, such as a plug with a plurality of holes are described. In some embodiments a molded plastic plug including a plurality of holes provides the barrier.