Abstract:
A hearing aid includes a magnetostrictive electroactive (ME) sensor that generates an electrical signal in response to a magnetic field or a mechanical pressure. In various embodiments, the ME sensor is used for cordless charging of a rechargeable battery in the hearing aid by generating an electrical signal in response to a magnetic field generated for power transfer, magnetic sound signal reception, and/or detection of user commands by sensing a magnetic field or a pressure applied to the hearing aid.
Abstract:
A hearing aid includes a magnetostrictive electroactive (ME) sensor that generates an electrical signal in response to a magnetic field or a mechanical pressure. In various embodiments, the ME sensor is used for cordless charging of a rechargeable battery in the hearing aid by generating an electrical signal in response to a magnetic field generated for power transfer, magnetic sound signal reception, and/or detection of user commands by sensing a magnetic field or a pressure applied to the hearing aid.
Abstract:
The present subject matter provides systems and methods for remotely controlling a hearing assistance device, including using a personal wireless device such as a cellular telephone. One embodiment includes a communication system for controlling a hearing assistance device. The system includes a personal wireless device including a short range radio transmitter. The short range radio transmitter is programmed to transmit instructions to the hearing assistance device by conversion of inputs to the personal wireless device into control signals for the hearing assistance device using on/off keying of the short range radio transmitter.
Abstract:
A hearing aid is powered by a rechargeable battery and senses a sound signal being a magnetic field using a telecoil. The hearing aid includes a battery recharge coil for receiving power from a hearing aid charger via an inductive couple. The telecoil and the inductive coil are integrated into a single device.
Abstract:
A hearing aid is powered by a rechargeable battery and senses a sound signal being a magnetic field using a telecoil. The hearing aid includes a battery recharge coil for receiving power from a hearing aid charger via an inductive couple. The telecoil and the inductive coil are integrated into a single device.
Abstract:
Described herein are methods and devices that use magnetometer in a hearing aid for measuring a magnetic field. The magnetometer may be a high-sensitivity triaxial magnetometer that detects the magnetic field in three orthogonally oriented directions. Such a magnetometer may be placed in the hearing aid without restriction as to location or orientation. The measured magnetic field may be used for telecoil switching when the presence of a magnetic field produced by a speaker or other source is detected. The measured magnetic field may also be used for magnetic mapping of the environment and motion detection.
Abstract:
The present subject matter relates generally to methods and apparatus for detecting cellular telephones using hearing assistance devices. In an embodiment, a hearing assistance device includes a processor and a radio frequency transceiver connected to the processor. A detection circuit is connected to the processor, the detection circuit including a band pass filter and where the detection circuit is adapted to monitor a radio frequency signal to detect a cellular telephone in proximity to the hearing assistance device based on the monitored signal. The hearing assistance device includes an acoustic input, a magnetic input, and a switch for selecting between the acoustic input and the magnetic input. The processor is adapted to actuate the switch from the acoustic input to the magnetic input when a cellular telephone is detected in proximity to the hearing assistance device.
Abstract:
A hearing aid includes a magnetic sensor to sense a sound signal being a magnetic field. The magnetic sensor includes a telecoil to sensor the sound signal and a counter coil to cancel a noise signal resulting from electromagnetic interference. In one embodiment, a driver circuit for the counter coil allows for automatic adjustment of the hearing aid circuit for an interference null.
Abstract:
Disclosed herein, among other things, is a hearing assistance device apparatus with a capacitive switch. According to various embodiments, the apparatus includes a BTE housing, hearing assistance electronics housed in the housing and a capacitive switch connected to the hearing assistance electronics and adapted to detect a wearer when the BTE housing is worn.