摘要:
A process for the purification of HBsAg is disclosed, which comprises adsorbing specifically on a carrier, in the presence of an inorganic salt in an amount of 5 to 25 W/V %, an HBsAg obtained by gene engineering.
摘要:
A method of purifying human serum albumin which comprises subjecting human serum albumin-containing solution to heat treatment of about 50.degree.-70.degree. C. for 1-5 hours in the presence of acetyltryptophan and/or an organic carboxylic acid with 6-12 carbon atoms or a salt thereof.
摘要:
Human serum albumin obtained by gene manipulation techniques can be purified by a combination of specified steps in which a culture supernatant obtained from a human serum albumin-producing host is subjected to ultrafiltration, heat treatment, acid treatment and another ultrafiltration, followed by subsequent treatments with a cation exchanger, a hydrophobic chromatography carrier and an anion exchanger, and by salting-out to thereby obtain a pure form of human serum albumin which contains substantially no proteinous and polysaccharide contaminants, which is formulated into a pharmaceutical preparation. This process makes it possible to effeciently purify recombinant human serum albumin and to provide substantially pure human serum albumin which does not contain producer host-related substances and other contaminants and is sufficiently free from coloration.
摘要:
A method for decoloring a recombinant human serum albumin by treating the albumin with a reducing agent is disclosed. Also, a method for decoloring a recombinant human serum albumin by treating the albumin with a method removing free polysaccharides with a cation exchanger followed by heat treatment is disclosed. The present invention provides a recombinant human serum albumin, coloring of which is fully suppressed by preventing binding of certain coloring components, which are contained in the raw materials or contaminants secreted by a microorganism, to human serum albumin so as not to cause coloring of the human serum albumin.
摘要:
A method for suppressing coloring of human serum albumin expressed by genetic engineering, which comprises culture and/or purification in the presence of an amine compound selected from the group consisting of alkylamines, diamines, guanidines, benzamidines, basic amino acids, and aminophenylacetic acids. According to the present invention, coloring of HSA expressed by genetic engineering can be suppressed to from one-half to one-tenth of that without treatment for coloring suppression. In addition, HSA can be recovered in high yields, and the treatment of the invention does not affect the inherent properties of HSA.
摘要:
Human serum albumin obtained by gene manipulation techniques can be purified by a combination of specified steps in which a culture supernatant obtained from a human serum albumin-producing host is subjected to ultrafiltration, heat treatment, acid treatment and another ultrafiltration, followed by subsequent treatments with a cation exchanger, a hydrophobic chromatography carrier and an anion exchanger, and by salting-out to thereby obtain a pure form of human serum albumin which contains substantially no proteinous and polysaccharide contaminants, which is formulated into a pharmaceutical preparation. The thus obtained human serum albumin can further be purified by treating recombinant human serum albumin with a hydrophobic chromatography carrier at pH of 2 to 5 and a salt concentration of 0.4 to 1 and exposing the carrier to a pH of 6 to 8 and a salt concentration of 0.01 to 0.3 M, or treating the culture supernatant with boric acid or a salt thereof at pH 8 to 11 for 1 to 10 hours and recovering the supernatant. This process makes it possible to effeciently purify recombinant human serum albumin and to provide substantially pure human serum albumin which does not contain producer host-related substances and other contaminants and is sufficiently free from coloration.
摘要:
A method of inhibiting the coloration of human serum albumin expressed by using the gene manipulation technology which method comprises separating coloring contaminants from said human serum albumin before said coloring contaminants bind to the human serum albumin.
摘要:
Human serum albumin obtained by gene manipulation techniques can be purified by a combination of specified steps in which a culture supernatant obtained from a human serum albumin-producing host is subjected to ultrafiltration, heat treatment, acid treatment and another ultrafiltration, followed by subsequent treatments with a cation exchanger, a hydrophobic chromatography carrier and an anion exchanger, and by salting-out to thereby obtain a pure form of human serum albumin which contains substantially no proteinous and polysaccharide contaminants, which is formulated into a pharmaceutical preparation. The thus obtained human serum albumin can further be purified by treating recombinant human serum albumin with a hydrophobic chromatography carrier at pH of 2 to 5 and a salt concentration of 0.4 to 1 and exposing the carrier to a pH of 6 to 8 and a salt concentration of 0.01 to 0.3 M, or treating the culture supernatant with boric acid or a salt thereof at pH 8 to 11 for 1 to 10 hours and recovering the supernatant. This process makes it possible to effeciently purify recombinant human serum albumin and to provide substantially pure human serum albumin which does not contain producer host-related substances and other contaminants and is sufficiently free from coloration.
摘要:
A method for producing human serum albumin which comprises cultivating a human serum albumin-producing host prepared by genetic engineering, in a medium containing a fatty acid having 10 to 26 carbon atoms, or its salt, and a method for cultivating the host. HSA production can be greatly increased by the present invention.
摘要:
A process for producing recombinant human serum albumin is disclosed, which comprises culturing a human serum albumin-producing host, prepared by gene manipulation techniques in a medium that contains an amino acid, preferably at least one amino acid selected from the group consisting of alanine, aspartic acid, glutamic acid, histidine, serine, tryptophan, valine, isoleucine, phenylalanine, cysteine and arginine, more preferably histidine. The process can significantly increase the yield of human serum albumin over that produced by known processes.