Real-time surgical tool presence/absence detection in surgical videos

    公开(公告)号:US12207861B2

    公开(公告)日:2025-01-28

    申请号:US17566116

    申请日:2021-12-30

    Abstract: Embodiments described herein provide various techniques and systems for building machine-learning surgical tool presence/absence detection models for processing surgical videos and predicting whether a surgical tool is present or absent in each video frame of a surgical video. In one aspect, a process for ensuring patient safety during a laparoscopic or robotic surgery involving an energy tool is disclosed. The process can begin receiving a real-time control signal indicating an operating state of an energy tool during the surgery. Next, the process receives real-time endoscope video images of the surgery. The process simultaneously applies a machine-learning surgical tool presence/absence detection model to the real-time endoscope video images to generate real-time decisions on a location of the energy tool in the real-time endoscope video images. The process then checks the real-time control signal against the real-time decisions to identify an unsafe event and takes a proper action when an unsafe event is identified.

    AUGMENTED REALITY HEADSET FOR A SURGICAL ROBOT

    公开(公告)号:US20250120787A1

    公开(公告)日:2025-04-17

    申请号:US19000271

    申请日:2024-12-23

    Abstract: Disclosed is an augmented reality (AR) headset that provides a wearer with spatial, system, and temporal contextual information of a surgical robotic system to guide the wearer in configuring, operating, or troubleshooting the surgical robotic system prior to, during, or after surgery. The spatial context information may be rendered to display spatially-fixed 3D-generated virtual models of the robotic arms, instruments, bed, and other components of the surgical robotic system that match the actual position or orientation of the surgical robotic system in the AR headset's coordinate frame. The AR headset may communicate with the surgical robotic system to receive real-time state information of the components of the surgical robotic system. The AR headset may use the real-time state information to display context-sensitive user interface information such as tips, suggestions, visual or audio cues on maneuvering the robotic arms and table to their target positions and orientations or for troubleshooting purpose.

    AUGMENTED REALITY HEADSET FOR A SURGICAL ROBOT

    公开(公告)号:US20220096197A1

    公开(公告)日:2022-03-31

    申请号:US17039949

    申请日:2020-09-30

    Abstract: Disclosed is an augmented reality (AR) headset that provides a wearer with spatial, system, and temporal contextual information of a surgical robotic system to guide the wearer in configuring, operating, or troubleshooting the surgical robotic system prior to, during, or after surgery. The spatial context information may be rendered to display spatially-fixed 3D-generated virtual models of the robotic arms, instruments, bed, and other components of the surgical robotic system that match the actual position or orientation of the surgical robotic system in the AR headset's coordinate frame. The AR headset may communicate with the surgical robotic system to receive real-time state information of the components of the surgical robotic system. The AR headset may use the real-time state information to display context-sensitive user interface information such as tips, suggestions, visual or audio cues on maneuvering the robotic arms and table to their target positions and orientations or for troubleshooting purpose.

    Augmented reality headset for a surgical robot

    公开(公告)号:US12186138B2

    公开(公告)日:2025-01-07

    申请号:US17039949

    申请日:2020-09-30

    Abstract: Disclosed is an augmented reality (AR) headset that provides a wearer with spatial, system, and temporal contextual information of a surgical robotic system to guide the wearer in configuring, operating, or troubleshooting the surgical robotic system prior to, during, or after surgery. The spatial context information may be rendered to display spatially-fixed 3D-generated virtual models of the robotic arms, instruments, bed, and other components of the surgical robotic system that match the actual position or orientation of the surgical robotic system in the AR headset's coordinate frame. The AR headset may communicate with the surgical robotic system to receive real-time state information of the components of the surgical robotic system. The AR headset may use the real-time state information to display context-sensitive user interface information such as tips, suggestions, visual or audio cues on maneuvering the robotic arms and table to their target positions and orientations or for troubleshooting purpose.

    PORT PLACEMENT GUIDE BASED ON INSUFFLATED PATIENT TORSO MODEL AND NORMALIZED SURGICAL TARGETS

    公开(公告)号:US20210378746A1

    公开(公告)日:2021-12-09

    申请号:US16894625

    申请日:2020-06-05

    Abstract: A method for determining surgical port placement for minimally invasive surgery. Based on received measurements, an instance of a parametric torso model that defines an external surface and a visceral surface each having a dome shape that takes into account an insufflation effect, is determined. Normalized surgical target locations in the parametric torso model are determined in response to an identification of a surgical procedure, and are mapped to un-normalized surgical target locations. Permissible port locations on the instance of the parametric torso model are computed, based on the characteristics of a surgical tool and based on the un-normalized surgical target locations. Other aspects are also described and claimed.

Patent Agency Ranking