Abstract:
A turbine assembly for a hydrokinetic torque converter. The turbine assembly is rotatable about a rotational axis and comprises a first turbine component coaxial with the rotational axis, a second turbine component formed separately from and non-moveably secured to the first turbine component coaxially therewith, and a plurality of grommets. The first turbine component has a plurality of first turbine blade members integrally formed therewith. One of the first and second turbine components has a substantially annular mounting portion provided with a plurality of mounting holes. Each of the grommets is mounted in one of the mounting holes through the mounting portion.
Abstract:
A hydrokinetic torque coupling device comprising an impeller wheel (2) able to hydrokinetically drive a turbine wheel (3) into rotation, with the impeller wheel (2) being rotationally coupled to a cover (5), with the turbine wheel (3) being able to be axially moved between an engaged position and a disengaged position, wherein it comprises an elastically deformable stress overtaking member (25) axially inserted between the turbine wheel (3) and a part (12) of the cover (5), with the stress overtaking member (25) being able to limit the axial displacement of the turbine wheel (3) towards the above-mentioned part (12) of the cover (5), opposite the turbine wheel (3).
Abstract:
A torque converter includes an impeller, a turbine-piston hydrodynamically drivable by the impeller, a stator, and an annular lockup resistance member. The impeller includes an impeller shell. The turbine-piston includes a turbine-piston shell. The turbine-piston shell includes a turbine-piston flange having a first flange surface facing an engagement surface of the impeller shell. The turbine-piston is movable axially toward and away from the engagement surface to position the torque converter into and out of a lockup mode in which the turbine-piston flange is mechanically locked to the impeller shell. The annular lockup resistance member is in the form of an annular elastomeric sandwich washer coaxially aligned with the rotational axis and including turbine-side and stator-side members, and an elastomeric inner member sandwiched between the turbine-side and stator-side members.
Abstract:
A turbine assembly for a hydrokinetic torque converter. The turbine assembly is rotatable about a rotational axis and hydrokinetic torque converter and comprises a first turbine component coaxial with the rotational axis, and a second turbine component non-moveably secured to the turbine component coaxially therewith. The first turbine component is formed separately from the second turbine component. The first turbine component has a plurality of first turbine blade members integrally formed therewith.
Abstract:
A torsional vibration damper assembly for a hydrokinetic torque coupling device, comprises a torsional vibration damper, and a dynamic absorber operatively connected to the torsional vibration damper. The torsional vibration damper comprises a driven member rotatable about a rotational axis, a first retainer plate rotatable relative to the driven member coaxially with the rotational axis, and a plurality of damper elastic members interposed between the first retainer plate and the driven member. The damper elastic members elastically couples the first retainer plate to the driven member. The dynamic absorber includes an inertial member. The inertial member is mounted to the torsional vibration damper rotatably relative to the driven member. The inertial member is rotationally guided and centered relative to the rotational axis by the driven member of the torsional vibration damper.
Abstract:
A hydrokinetic torque converter comprises an impeller rotatable about a rotational axis, a coaxial turbine, and a stator disposed between the impeller and the turbine. The stator includes an annular stator hub, an annular radially outer stator rim, a plurality of stator blades radially outwardly extending between the stator hub and the stator rim, and an annular outer stator flange extending radially outwardly from the stator rim thereof and disposed between an impeller core ring and a turbine core ring. The stator further includes a plurality of hydraulic pressure grooves provided on at least one of axially opposite impeller and turbine side surfaces of the stator flange. The hydraulic pressure grooves face at least one of the impeller and turbine core rings so as to create a hydrodynamic lift between the stator and at least one of the impeller and turbine core rings in the axial direction.
Abstract:
A hydrokinetic torque coupling device includes an impeller, a casing having a first engagement surface, a turbine-piston hydrodynamically drivable by the impeller, and a biasing device. The turbine-piston is hydrodynamically drivable by the impeller and includes a turbine-piston shell having a second engagement surface facing the first engagement surface. The turbine-piston is axially displaceable relative to the impeller between a hydrodynamic transmission mode and a lockup mode. The biasing device is configured to exert an axial load against the turbine-piston to urge the turbine-piston axially away from the lockup mode and towards the hydrodynamic transmission mode. The axial load exerted by the biasing device decreases as the turbine-piston moves axially towards the lockup mode and increases as the turbine-piston moves axially away from the lockup mode.
Abstract:
A hydrokinetic torque coupling device features an impeller including an impeller shell, a casing shell connected to the impeller shell to establish a casing with a first engagement surface, a turbine-piston including an axially movable turbine-piston shell, and an annular intermediate clutch component affixed to the turbine-piston shell and including a lockup portion. The lockup portion has a second engagement surface that is movable axially toward and away from the first engagement surface to position the hydrokinetic torque coupling device into and out of a lockup mode.
Abstract:
A hydrokinetic torque coupling device for coupling together a driving shaft and a driven shaft. The torque coupling device includes a casing rotatable about a rotational axis and having a casing cover shell and an impeller shell, an impeller coaxial aligned with the rotational axis and including the impeller shell, a turbine-piston coaxially aligned with and drivable by the impeller, a stator situated between the impeller and the turbine-piston, an output member including an output bevel gear, a torsional vibration damper operatively connecting the turbine-piston and the output hub, a rotatable input bevel gear drivenly connected to the torsional vibration damper, a carrier configured to connect to a stationary stator shaft, and a bevel pinion supported by and rotatable relative to the carrier. The bevel pinion meshes with gear teeth of the input bevel gear and gear teeth of the output bevel gear of the output member.
Abstract:
A hydrokinetic torque coupling device for coupling together driving and driven shafts, comprises a casing, impeller and turbine wheels, a torsional vibration damper, a turbine hub non-rotatably connected to the turbine wheel, and first and second vibration absorbers. Each of the first and second vibration absorbers is one of a dynamic absorber and a pendulum oscillator. The turbine hub is non-rotatably coupled to a driven member of the torsional vibration damper. The first vibration absorber is mounted to the turbine hub and the second vibration absorber is mounted to one of the turbine hub and the casing. The first vibration absorber and the second vibration absorber are tuned to address different orders of vibrations. The dynamic absorber includes an inertial member and a connecting plate coupled to the inertial member. The pendulum oscillator includes a support member and flyweights configured to oscillate relative to the support member.