Abstract:
Electroluminescent phosphors having substantially increased luminance and maintenance over that of prior art electroluminescent phosphors may be made by (1) doping an inorganic intercalation compound having an atomic structure interspersed with vacant spaces, with selected activator ions capable of luminescent emission, and (2) introducing organic monomers or other conductive material into the vacant spaces of the atomic structure of the doped inorganic intercalation compound. The organic monomers may be polymerized in situ to form conductive polymers therein.
Abstract:
Electroluminescent phosphors having substantially increased luminance and maintenance over that of prior art electroluminescent phosphors may be made by (1) doping an inorganic intercalation compound having an atomic structure interspersed with vacant spaces, with selected activator ions capable of luminescent emission, and (2) introducing organic monomers or other conductive material into the vacant spaces of the atomic structure of the doped inorganic intercalation compound. The organic monomers may be polymerized in situ to form conductive polymers therein.
Abstract:
Electroluminescent phosphors having substantially increased luminance and maintenance over that of prior art electroluminescent phosphors may be made by (1) doping an inorganic intercalation compound having an atomic structure interspersed with vacant spaces, with selected activator ions capable of luminescent emission, and (2) introducing organic monomers or other conductive material into the vacant spaces of the atomic structure of the doped inorganic intercalation compound. The organic monomers may be polymerized in situ to form conductive polymers therein.
Abstract:
Electroluminescent phosphors having substantially increased luminance and maintenance over that of prior art electroluminescent phosphors may be made by (1) doping an inorganic intercalation compound having an atomic structure interspersed with vacant spaces, with selected activator ions capable of luminescent emission, and (2) introducing organic monomers or other conductive material into the vacant spaces of the atomic structure of the doped inorganic intercalation compound. The organic monomers may be polymerized in situ to form conductive polymers therein.
Abstract:
Inorganic intercalation phosphors were made by doping an inorganic intercalation compound having an atomic structure interspersed with vacant spaces with selected activator ions capable of luminescent emission when excited by ultraviolet light and/or cathode rays.
Abstract:
A copper- and/or manganese-activated zinc sulfide electroluminescent phosphor is made by coating particles of a ferroelectric material with a very thin coating of the phosphor. The phosphor is made by reacting zinc- and copper- and/or manganese-containing species with hydrogen sulfide and hydrogen chloride gases in a low-temperature vapor state reaction.
Abstract:
A cadmium carbonate/cadmium sulfide photoconductor is made by mixing solutions containing carbonate, cadmium and copper ions to form CdCO.sub.3 :Cu precipitate which is subsequently converted to CdCO.sub.3 /CdS:Cu by bubbling hydrogen sulfide gas through a hot aqueous suspension of the CdCO.sub.3 :Cu precipitate.
Abstract:
A photoreceptor device comprises a conductive substrate and an electrophotographic layer thereon. The electrophotographic layer comprises copper-chlorine activated cadmium sulfide blended with a light-absorbing material.
Abstract:
Inorganic intercalation phosphors were made by doping an inorganic intercalation compound having an atomic structure interspersed with vacant spaces with selected activator ions capable of luminescent emission when excited by ultraviolet light and/or cathode rays.
Abstract:
A zinc sulfide precursor material having axially symmetric platelet-type particles for a copper-activated zinc sulfide electroluminescent phosphor is made by reacting zinc- and copper-containing species with hydrogen sulfide and hydrogen chloride gases in a low-temperature vapor state reaction to obtain copper-containing zinc sulfide particles.