Abstract:
A process for improving the half-life of ZnS:Cu,Cl electroluminescent phosphor wherein the improvement comprises firing a previously first fired material comprised of ZnS:Cu,Cl with a quantity of MgSO4.7H2O to form a second fired material. The quantity is from 0.015 to 0.15 mole of MgSO4.7H2O/mole of ZnS.
Abstract:
Electroluminescent phosphors having substantially increased luminance and maintenance over that of prior art electroluminescent phosphors may be made by (1) doping an inorganic intercalation compound having an atomic structure interspersed with vacant spaces, with selected activator ions capable of luminescent emission, and (2) introducing organic monomers or other conductive material into the vacant spaces of the atomic structure of the doped inorganic intercalation compound. The organic monomers may be polymerized in situ to form conductive polymers therein.
Abstract:
An electroluminescent phosphor powder includes copper-activated zinc sulfide particles that have a size distribution with a D50 value of no more than 10 μm, where no more than 25% of the particles have a size greater than about 15 μm and/or a 24-hr brightness of at least 15 footlamberts. These particles are made by a method that includes first firing copper-doped zinc sulfide mixed with zinc oxide, sulfur and a chloride-containing flux, rapidly cooling the mixture to below 100° C., and then mulling and second firing the mixture to provide a powder. The powder can then be elutriated to provide the electroluminescent powder with a narrow particle size distribution (more than 90% between about 5 and 15 μm). The elutriating step can be avoided (albeit with a slightly wider size distribution) by more tightly controlling the first firing temperature.
Abstract:
An electroluminescent phosphor with an increased efficiency is created by blending a chloride flux, a copper source and a zinc sulfide to form a mixture and then heating the mixture for a period of time, cooling the mixture, and washing it with de-ionized water. The mixture is dried and milled to form cubic ZnS from hexagonal ZnS, forming a beginning uncoated ZnS:Cu,Cl electroluminescent phosphor. This beginning phosphor is added to other materials, including Ga2O3, forming a second step material (SSM). The SSM is placed into a first vessel, such as a plastic bottle, blended, sifted and then placed in a second inert reaction vessel that is then heated for a period of time. After cooling, the fired SSM is washed with de-ionized water, washed with acetic acid, again washed with de-ionized water to remove residual acid, washed with KCN and again with de-ionized water to remove residual KCN. The fired and washed SSM is then dried, filtered and sifted, producing a new phosphor with an increased efficiency.
Abstract translation:通过混合氯化物助熔剂,铜源和硫化锌以形成混合物,然后将混合物加热一段时间,冷却混合物,并用去离子水洗涤,产生效率提高的电致发光磷光体。 将混合物干燥并研磨以从六方ZnS形成立方ZnS,形成最初的未涂覆的ZnS:Cu,Cl电致发光磷光体。 将这种起始的磷光体添加到其它材料中,包括形成第二步骤材料(SSM)的Ga 2 O 3。 将SSM放入第一容器中,例如塑料瓶,混合,筛分,然后置于第二惰性反应容器中,然后将其加热一段时间。 冷却后,用去离子水洗涤烧制的SSM,用乙酸洗涤,再次用去离子水洗涤以除去残留的酸,用KCN再次用去离子水洗涤以除去残留的KCN。 然后将烧制和洗涤的SSM干燥,过滤并筛分,产生效率提高的新型磷光体。
Abstract:
Electroluminescent phosphors having substantially increased luminance and maintenance over that of prior art electroluminescent phosphors may be made by (1) doping an inorganic intercalation compound having an atomic structure interspersed with vacant spaces, with selected activator ions capable of luminescent emission, and (2) introducing organic monomers or other conductive material into the vacant spaces of the atomic structure of the doped inorganic intercalation compound. The organic monomers may be polymerized in situ to form conductive polymers therein.
Abstract:
Electroluminescent phosphors having substantially increased luminance and maintenance over that of prior art electroluminescent phosphors may be made by (1) doping an inorganic intercalation compound having an atomic structure interspersed with vacant spaces, with selected activator ions capable of luminescent emission, and (2) introducing organic monomers or other conductive material into the vacant spaces of the atomic structure of the doped inorganic intercalation compound. The organic monomers may be polymerized in situ to form conductive polymers therein.
Abstract:
Blue-emitting phosphors for use with plasma display panels (PDP) or other vacuum ultraviolet-excited (VUV) devices are provided. These blue-emitting phosphors and mixtures thereof include at least a europium-activated calcium-substituted barium hexa-aluminate (CBAL) phosphor. Preferably, the CBAL phosphor has a composition which may be represented by the formula: Ba1.29-x-yCaxEuyAl12O19.29, wherein 0
Abstract:
The brightness of small size terbium activated gadolinium oxysulfide (Gd.sub.2-x Tb.sub.x O.sub.2 S) phosphor is increased by the incorporation of a lithium dopant. The lithium dopant is added to the phosphor by mixing lithium phosphate with the raw materials formulated to make the phosphor.
Abstract:
Electroluminescent phosphors having substantially increased luminance and maintenance over that of prior art electroluminescent phosphors may be made by (1) doping an inorganic intercalation compound having an atomic structure interspersed with vacant spaces, with selected activator ions capable of luminescent emission, and (2) introducing organic monomers or other conductive material into the vacant spaces of the atomic structure of the doped inorganic intercalation compound. The organic monomers may be polymerized in situ to form conductive polymers therein.
Abstract:
A method for reducing impurity levels of calcium, magnesium and/or silicon in hexammine cobalt halide compounds involves the addition of ferric ions and, optionally, soluble fluorides to an aqueous hexammine cobalt (III) chloride solution having a pH of at least 9. Insoluble compounds of magnesium fluoride, calcium fluoride, and/or ferric hydroxide and silicon coprecipitates are removed from the solution by filtration.