Abstract:
A rim seal for a rotor of a gas turbine engine includes a seal portion extending circumferentially across a rim cavity of a rotor, the sealing portion configured to seal the rim cavity and a first foot portion extending radially inwardly from a first end of the sealing portion. A rotor assembly for a gas turbine engine includes a rotor disc and a plurality of rotor blades secured to the rotor disc defining a rim cavity between the rotor disc and a rim portion of the plurality of rotor blades. A rim seal is located in the rim cavity and includes a seal portion extending circumferentially across the rim cavity, the sealing portion configured to seal the rim cavity. The seal portion has an increasing radial thickness with increasing distance from a first end of the rim seal and from a second end opposite the first end.
Abstract:
A gas turbine engine includes a turbine section. The turbine section includes a disk that is rotatable about an axis. A plurality of turbine blades are mounted around a periphery of the disk, and a plurality of seals are arranged between the turbine blades and the periphery of the disk. Each of the seals includes, with respect to the axis, a radially outer surface and a radially inner surface. The radially inner surface includes a plurality of protrusions.
Abstract:
An airfoil according to an exemplary aspect of the present disclosure includes, among other things, an airfoil section having an external wall and an internal wall. The internal wall defines a first reference plane extending in a spanwise direction and through a thickness of the internal wall. A first cavity and a second cavity are separated by the internal wall. A plurality of crossover passages within the internal wall connects the first cavity to the second cavity. Each of the plurality of crossover passages defines a passage axis. The plurality of crossover passages are distributed in the spanwise direction and arranged such that the passage axis of each of the plurality of cooling passages intersects a surface of the second cavity. The plurality of crossover passages include a first set of crossover passages and a second set of crossover passages positioned on opposite sides of the first reference plane. The passage axis of each of the first set of crossover passages is arranged at a first vertical angle relative to a spanwise axis, and the passage axis of each of the second set of crossover passages is arranged at a second, different vertical angle relative to the spanwise axis. A casting core for an airfoil is also disclosed.
Abstract:
A seal arc segment includes a body including a radially inner surface and a radially outer surface. The radially inner surface and the radially outer surface are located between a first circumferential end and a second circumferential end. A recessed portion defines a cavity in the radially outer surface. A notch is located in an edge of the recessed portion adjacent the first circumferential end.
Abstract:
A gas turbine engine airfoil includes a body that provides an exterior airfoil surface that extends in a radial direction to a tip. The exterior surface has a leading edge in a forward direction and a trailing edge in an aft direction. The tip includes a squealer pocket that has a recess surface. A cooling passage is arranged in the body. Each of the cooling holes extends from an inlet at the cooling passage to an outlet at the recessed surface. The inlet and outlet are arranged at an angle in an angular direction relative to the recessed surface. The angular direction is toward at least one of the forward and aft directions.
Abstract:
A gas turbine engine component comprises a blade having a leading edge and a trailing edge. The blade is mounted to a disc and configured for rotation about an axis. A platform supports the blade, and has a fore edge portion at the leading edge and an aft edge portion at the trailing edge. At least one of the fore edge portion and aft edge portion includes a mouth portion defined by an inner wing and an outer wing spaced radially outward of the inner wing. At least one coverplate is retained against the disc by the inner wing. A gas turbine engine is also disclosed.
Abstract:
A rotor disk is provided. The rotor disk may comprise a disk lug and a trench. The disk lug may be fixed to a distal surface of the rotor disk. The trench may be disposed on a surface of the disk lug. The trench may extend radially inwards from a distal surface of the disk lug. The trench may be configured to at least partially define a flow path by which cooling air may reach a distal surface of the disk lug in order to provide disk lug cooling.
Abstract:
A sealing structure for a gas turbine engine includes a rotor that has a rim with slots and a cooling passage. The rotor is rotatable about an axis. First and second blades are arranged in the slots and respectively including first and second shelves facing one another within a pocket that is in fluid communication with the cooling passage. The first and second shelves form an opening. A reversible seal is arranged within the pocket and has a body that is configured for operative association with the first and second blades in any of four orientations to seal the opening in a first condition. The seal includes first and second protrusions respectively extending from first and second faces opposing one another. The first protrusions supported on the rim in a first condition.
Abstract:
An airfoil having one-sided pedestals is disclosed. The airfoil may define various cavities, such as an inflow feed cavity, an impingement cavity, and an outflow cavity. The various cavities may be connected by crossover sections such as an inflow crossover section and an outflow crossover section. Cooling air may be conducted into the inflow feed cavity, out of the inflow feed cavity through an inflow crossover section into an impingement cavity, and through an impingement cavity. The cooling air may be conducted out of the impingement cavity and into an outflow cavity through an outflow crossover section. Various cavities may include one-wall pedestals. One-wall pedestals may be structures extending from a wall of a cavity into the void of the cavity, whereupon cooling air may impinge, effectuating convective cooling.
Abstract:
An airfoil comprises pressure and suction surfaces extending from a root section to a tip section of the airfoil. The airfoil also comprises a leading edge and trailing edge defining a chord length therebetween. A tip shelf is formed along the tip section between the pressure surface and a tip shelf wall, the tip shelf wall being spaced between the pressure surface and the suction surface. A squealer pocket is formed along the tip section between the tip shelf wall and a squealer tip wall extending from the suction surface. The tip shelf extends from within 10% of the cord length measured from the leading edge to within 10% of the chord length measured from the trailing edge. The squealer pocket extends from within 10% of the chord length measured from the leading edge to terminate less than 85% of the chord length measured from the trailing edge.