摘要:
In a method for forming a sintered silver coating film, for use as a heat spreader, on a semiconductor substrate or a semiconductor package, a coating film of an ink or paste containing silver nanoparticles is formed on one surface of the semiconductor substrate or the substrate package. Further, the coating film is sintered by heating the coating film under an atmosphere of a humidity of 30% to 50% RH (30° C.) by a ventilation oven.
摘要:
There is provided a film forming apparatus for heating a target substrate on a stage, supplying a processing gas to the target substrate, and performing a film forming process on the target substrate, including: an accommodation part having an internal space for accommodating the stage, wherein the processing gas is supplied to the internal space and is inductively heated; a rotary shaft part configured to rotatably support the stage; and an elevating part configured to raise and lower the target substrate to deliver the target substrate between an external substrate transfer device and the stage, wherein at least one of the rotary shaft part and the elevating part is formed of a material having a thermal conductivity of 15 W/m·K or less and a melting point of 1,800 degrees C. or higher.
摘要:
A film forming method of forming a silicon carbide film on a substrate to be processed includes: forming the silicon carbide film on the substrate to be processed by loading a holder that holds the substrate to be processed into a processing container of a film forming apparatus to place the holder on a stage, and supplying a raw material gas into the processing container; and removing a reaction product, which has been adhered to a part other than the substrate to be processed during the forming the silicon carbide film, by loading a plate-shaped member having at least a surface formed by pyrolytic carbon into the processing container to place the plate-shaped member on the stage, and supplying a fluorine-containing gas into the processing container.
摘要:
A coating film forming apparatus includes: a coating nozzle; a horizontal moving mechanism that relatively moves a substrate and the coating nozzle; a pressure regulating mechanism that regulates a pressure inside the coating nozzle; and a controller that changes an amount of the coating solution to be supplied from the coating nozzle, wherein the coating nozzle includes: a discharge port that is formed long in a direction perpendicular to a direction of the relative movement with respect to the substrate; and a storage chamber that communicates with the discharge port and stores the coating solution therein, and wherein while the coating solution is applied to the substrate, the pressure regulating mechanism is controlled according to a change in width of the substrate, to regulate the pressure inside the storage chamber to thereby change a discharge amount per unit time of the coating solution to be discharged.