Abstract:
A system and method are described for reducing engine vibration during cylinder deactivation in selected operating conditions. The method utilizes open valve deactivation to better match the cylinder pressure of deactivated cylinders to combusting cylinders. This mode is utilized, along with cylinder closed valve cylinder deactivation, to improve overall fuel economy, while at the same time reducing vibration felt by the vehicle driver.
Abstract:
A system and method to control engine valve timing to during the start of an internal combustion engine. Valves that may be deactivated are controlled in a manner to reduce hydrocarbon emissions during the start of an internal combustion engine.
Abstract:
A method for starting an internal combustion engine of a hybrid-electric vehicle having a controller, the engine having a plurality of cylinders, each with at least an intake and exhaust valve, each of which may be held in a position for a cycle of a cylinder, the method comprising of deactivating a plurality of cylinders in said engine in response to a signal from the controller of the hybrid-electric vehicle by mechanically deactivating valves in each cylinder of the engine, the deactivation in response to a request from the controller of the hybrid-electric vehicle and to reduce a number of operating valves in each cylinder of the engine.
Abstract:
A system and method to control engine valve timing to during the start of an internal combustion engine. Valves that may be deactivated are controlled in a manner to reduce hydrocarbon emissions during the start of an internal combustion engine.
Abstract:
A method for controlling a vehicle engine having a plurality of cylinders and an electric motor configured to rotate the engine is provided. The method includes, during engine idling, advancing spark timing of at least one cylinder to substantially before a peak torque timing. The method further includes adjusting motor torque output of the electric motor to maintain engine idle speed.
Abstract:
A method for detection of emissions levels during extended engine speed controlled operation is provided. The method includes monitoring mass airflow passing through the engine while operating the engine. The method further includes adjusting mass airflow responsive to engine speed to maintain a desired engine speed. The method further includes shutting down the engine when engine mass airflow becomes higher than a predetermined mass airflow threshold.
Abstract:
A method for detection of emissions levels during extended engine speed controlled operation is provided. The method includes monitoring mass airflow passing through the engine while operating the engine. The method further includes adjusting mass airflow responsive to engine speed to maintain a desired engine speed. The method further includes shutting down the engine when engine mass airflow becomes higher than a predetermined mass airflow threshold.
Abstract:
A method for controlling stopping and starting of an engine having a variable event valvetrain is described. According to the method engine valves may be used to reduce engine evaporative emissions as well as engine starting emissions.Since the engine configuration shown has electrically actuated intake and exhaust valves it is possible to reconfigure the engine operating sequence during a start. For example, the pistons for cylinders two and three are in the same position at the same time. This allows either cylinder to be set to an intake stroke during a subsequent engine restart when the piston is traveling away from the cylinder head while the companion cylinder is set to the expansion or power stroke. Thus, the cylinder having the first intake stroke could be configured to provide a first combustion event during an engine restart. On the other hand, the cylinder set to the power stroke could have been set to the intake stroke such that it is the first cylinder to provide a combustion stroke during a restart.
Abstract:
A system for controlling a multiple cylinder internal combustion engine with electromagnetic valve actuation, comprising of at least one cylinder with an engine cylinder valve, a second controller operably coupled to the engine cylinder valve, said second controller configured to adjust at least one of the valve opening and closing timing of the engine cylinder valve, and a first controller connected with the second controller over a first link and a second link, wherein the first controller is configured to send an engine position indication signal to the second controller over the first link and receive a status signal from the second controller over the second link, and wherein the first controller outputs a synchronization degradation signal responsive to a synchronization error between the engine position indication signal and the status signal.
Abstract:
A method for improving engine intake manifold pressure control of an internal combustion engine is described. According to one aspect of the description, the manifold pressure may be controlled to reduce fuel consumption and engine emissions during at least some operating conditions.