3-D composite anodes for Li-ion batteries with high capacity and fast charging capability

    公开(公告)号:US11626583B2

    公开(公告)日:2023-04-11

    申请号:US16899562

    申请日:2020-06-11

    摘要: An anode for a lithium ion battery is disclosed includes a first major face, a second major face that, together with the first major face, defines a thickness of the anode, and at least one carbonaceous electrochemically active lithium host material distributed between the first and second major faces of the anode. The at least one carbonaceous electrochemically active lithium host material is selected from the group consisting of graphite, hard carbon, or a blend of graphite and hard carbon. The anode additionally defines a plurality of vertical channels extending at least partially through the thickness of the anode. A lithium-ion batter that includes the disclosed anode and a method of charging a lithium-ion battery that includes the disclosed anode are also disclosed.

    CERAMIC GARNET BASED IONICALLY CONDUCTING MATERIAL

    公开(公告)号:US20180013171A1

    公开(公告)日:2018-01-11

    申请号:US15646327

    申请日:2017-07-11

    摘要: Disclosed is a ceramic material having a formula of LiwAxM2Re3-yOz, wherein w is 5-7.5; wherein A is selected from B, Al, Ga, In, Zn, Cd, Y, Sc, Mg, Ca, Sr, Ba, and any combination thereof; wherein x is 0-2; wherein M is selected from Zr, Hf, Nb, Ta, Mo, W, Sn, Ge, Si, Sb, Se, Te, and any combination thereof; wherein Re is selected from lanthanide elements, actinide elements, and any combination thereof; wherein y is 0.01-0.75; wherein z is 10.875-13.125; and wherein the material has a garnet-type or garnet-like crystal structure. The ceramic garnet based material is ionically conducting and can be used as a solid state electrolyte for an electrochemical device such as a battery or supercapacitor.

    Solid-State Battery Electrolyte Having Increased Stability Towards Cathode Materials

    公开(公告)号:US20200280093A1

    公开(公告)日:2020-09-03

    申请号:US16761592

    申请日:2018-11-06

    摘要: Disclosed are electrochemical devices, such as lithium ion battery electrodes, lithium ion conducting solid-state electrolytes, and solid-state lithium ion batteries including these electrodes and solid-state electrolytes. Also disclosed are composite electrodes for solid state electrochemical devices. The composite electrodes include one or more separate phases within the electrode that provide electronic and ionic conduction pathways in the electrode active material phase. A method for forming a composite electrode for an electrochemical device is also disclosed. One example method comprises (a) forming a mixture comprising (i) a lithium host material, and (ii) a solid-state conductive material comprising a ceramic material having a crystal structure and a dopant in the crystal structure; and (b) sintering the mixture, wherein the dopant is selected such that the solid-state conductive material retains the crystal structure during sintering with the lithium host material.

    System and Method for the Formation of Facile Lithium Metal Anode Interface With a Solid State Electrolyte

    公开(公告)号:US20180301751A1

    公开(公告)日:2018-10-18

    申请号:US15943302

    申请日:2018-04-02

    摘要: Disclosed are electrochemical devices, such as lithium battery electrodes, lithium ion conducting solid-state electrolytes, and solid-state lithium metal batteries including these electrodes and solid-state electrolytes. In one disclosed method, a solid state electrolyte material including a precursor layer having a first electronic conductivity is provided; and the precursor layer on the solid state electrolyte material is reduced to an interfacial layer having a second electronic conductivity greater than the first electronic conductivity. Also disclosed is a method of forming a solid state electrolyte for an electrochemical device including an anode comprising an electrochemically active metal, wherein the method comprises providing a solid state electrolyte material, and depositing an interfacial layer comprising a first metal on the surface of the solid state electrolyte material, wherein the electrochemically active metal does not form an alloy with the first metal during cycling or formation of the electrochemical device.