Abstract:
Low-cost electron emission device and field emission display using a cold cathode electron source having a high electron beam utilization efficiency and capable of controlling the spread of the electron beam. Under the condition Ea≧Eg, the electric field strength near the gate electrode forming an electron emission control unit is varied between a central portion and a peripheral portion in the plane of a single pixel (or sub-pixel), thereby controlling the spread of the electron beam. A device using a field emission-type electron source array capable of achieving a high emission current density at low voltage can be realized at low cost.
Abstract:
A cold-cathode electron source having an improved utilization efficiency of an electron beam and a simple structure. The cold-cathode electron source comprises a gate electrode (4) provided on a substrate (2) through an insulating layer (3) and an emitter (6) extending through the insulating layer (3) and the gate electrode (4) and disposed in an opening of the gate. During the emission of electrons from the emitter (6), the following relationships are satisfied: 10 [V/μm]≧(Va−Vg)/(Ha−Hg)≧Vg/Hg; and Vg/Hg [V/μm]≧Va×10−4×(9.7−1.3×1n(Hg))×(1000/Ha)0.5, where Ha [μm] is an anode-emitter distance, Va [V] is an anode-emitter voltage, Hg [μm] is a gate-emitter distance, and Vg [V] is a gate-emitter voltage.
Abstract:
Disclosed is a cold cathode electron source characterized in that a cold cathode material which can achieve electron emission in a low electric field (e.g., a carbon nanotube), necessary constituent elements are provided individually in uncalcined ceramic sheets (green sheets 21, 43, 46) and the sheets are laminated and calcined to form an integral structure. The electron source can be manufactured by forming through-holes 20 in a flat plate, charging a conductive paste 30 containing carbon nanotubes 31 dispersed therein into the through-holes 20 by vacuum suction, thereby causing to orient the carbon nanotubes 31 in the axis direction of the through-hoes 20. The electron source is useful for the low-cost manufacture of a device with a cold cathode electron source which can achieve ready vacuum evacuation and maintenance of the vacuum level, as well as a high emission current density at a low voltage.
Abstract:
A liquid crystal display device (1) of the present invention includes: gate bus lines (2); source bus lines (4); CS bus lines (6); gate electrodes; source electrodes; first transistors (TFT1); second transistors (TFT2); first pixel electrodes; second pixel electrodes; pixel regions (8) each including a first sub pixel (8a) and a second sub pixel (8b); pixel regions (10) each including a first sub pixel (10a) and a second sub pixel (10b); pixel regions (12) each including a first sub pixel (12a and a second sub pixel (12b)); gate electrodes; drain electrodes; third transistors (TFT3); first buffer capacitor electrodes; second buffer capacitor electrodes; and capacitors (Cd). Capacitances of the capacitors (Cd) in the respective pixel regions vary depending on the colors displayed by the respective pixel regions. This makes it possible that occurrence of a color shift of an image viewed from the oblique viewing direction is reduced.
Abstract:
A liquid crystal drive circuit, a liquid crystal display device, and a method for driving the liquid crystal drive circuit are disclosed. A liquid crystal drive circuit of an embodiment includes: a gate bus line drive circuit for driving a plurality of gate bus lines; a drive parameter selecting section for selecting, in accordance with how many gate bus lines of the plurality of gate bus lines are concurrently driven by the gate bus line drive circuit, a drive parameter optimized for a ratio between bright and dark pixels which ratio is determined in accordance with how many gate bus lines of the plurality of gate bus lines are concurrently driven by the drive parameter selecting section; and a source bus line drive circuit for driving a plurality of source bus lines by use of the drive parameter thus selected by the drive parameter selecting section.
Abstract:
In a plasma processing apparatus, electromagnetic waves are radiated from slots of waveguides into a processing chamber via dielectric windows that are supported on beams, thereby generating a plasma. A substrate, which is an object of processing, is processed by the generated plasma. Dielectric plates are attached to those surfaces of the beams, which are opposed to the processing chamber. The thickness of each dielectric plate is set at ½ or more of the intra-dielectric wavelength of the electromagnetic waves. Using the plasma processing apparatus, a large-area processing can uniformly be performed.
Abstract:
A thin-film semiconductor device including a transparent insulating substrate, an island semiconductor layer formed on the transparent insulating substrate and including a source region containing a first-conductivity-type impurity and a drain region containing a first-conductivity-type impurity and spaced apart from the source region, a gate insulating film and a gate electrode which are formed on a portion of the island semiconductor layer, which is located between the source region and the drain region, a sidewall spacer having a 3-ply structure including a first oxide film, a nitride film and a second oxide film, which are respectively formed on a sidewall of the gate electrode, and an interlayer insulating film covering the island semiconductor layer and the gate electrode.
Abstract:
An automatic sphygmomanometer is provided with an inflatable cuff adapted to be wrapped around an arm of a patient, instrument body for feeding compressed air into said cuff and for sensing blood pressure, a pump compartment having two end plates and pump disposed therein, a connecting tube which extends through an opening of the end plate of a pump compartment and which is formed of a soft silicone rubber, a seal for providing a noise seal between said connecting tube and the opening of the pump compartment. An elastomeric body is [shaped to receive said pump therein] rounded around the outer circumferential surface of said pump. The pump is accommodated within said compartment in a state where each end flat surface of said pump is exposed to a space which is defined between the end flat surface of the pump and an inner surface of the end plate of the pump compartment and a plurality of ribs which are formed on an inner circumferential surface of said elastomeric body, forming a gap between the inner circumferential surface of the pump compartment and the outer circumferential surface of said elastomeric body.
Abstract:
An object of the present invention is to provide a readily produced and easily handled heat storage member. The heat storage member 1 has a rectangular plane surface of, for example, 15 (cm)×20 (cm), and has a thickness of, for example, 10 to 15 mm. The heat storage member 1 includes a gelatinous latent heat storage material 12, and a large number of highly heat conductive fillers 14 dispersed in the latent heat storage material 12. The highly heat conductive fillers 14 are mixed in the latent heat storage material 12 with a bias in dispersion density. In the rectangular plane surface of the heat storage member 1, a periodic pattern is formed in combination of cellular (cell-like) regions 10, which are demarcated by, for example, hexagonal contour lines 16 and which are periodically arrayed in the vertical and horizontal directions.