Method and device for photometrical charting of a license plate for a vehicle

    公开(公告)号:US11754439B2

    公开(公告)日:2023-09-12

    申请号:US17322804

    申请日:2021-05-17

    Abstract: The invention relates to a method for photometrical charting of a reflectance standard (Z) illuminated by a license plate light (1). A camera (4) releasable by a control unit (5) is arranged and aligned relative to a holding device (3) configured for holding a reflectance standard (Z) in such a way, that a luminance density image (B1, B2) recorded by the camera (4) at least covers the reflective surface (Z.1) of a reflectance standard (Z) held by the holding device (3). A license plate light (1) is arranged in a positioning device (2) which is movable by the control unit (5). The positioning device (2) is controlled by the control unit (5) in such a way that the license plate light (1) arranged therein is traversed to at least one position (P1, P2), optionally to multiple positions (P1, P2) sequentially, relative to the reflectance standard (Z) arranged in the holding device (3) and held there. In each position (P1, P2), recording of at least one luminance density image (B1, B2) is triggered. An overall image (B) is formed from the recorded luminance density images (B1, B2) recorded by the camera (4). Furthermore, the invention relates to an arrangement for performing this method.

    Method for determining the start of relaxation after a burn-in process at optical display devices controllable pixel by pixel

    公开(公告)号:US11557111B2

    公开(公告)日:2023-01-17

    申请号:US17342384

    申请日:2021-06-08

    Abstract: The invention relates to a method for determining a start of relaxation (tR) when switching over an optical display device (1) controllable pixel by pixel from a burn-in image (EB′) to a relaxation image (RB), wherein. A trigger image area (TB) having at least one image pixel is set to pixel values such that a parameter determined based on the at least one pixel value across the trigger image area (TB) differs between the burn-in image (EB′) and the relaxation image (RB). The local distribution of a greyscale value is continuously recorded by means of a camera (3, 13). A trigger subfield (20) comprising at least one sensor pixel (15) is defined matching the trigger image area (TB). A trigger parameter (T) is continuously determined from the pixel values of the at least one sensor pixel (15) in the trigger subfield (20) with a trigger clock rate and the start of relaxation (tR) is determined as the point in time at which the continuously determined trigger parameter (T) crosses the trigger threshold value (TS). The invention furthermore relates to a device and a method for determining the burn-in behavior of a display device (1) as well as the use of such a method for a display (1) determined for application in a vehicle.

    Method for photometric characterization of the optical radiation characteristics of light sources and radiation sources

    公开(公告)号:US11927477B2

    公开(公告)日:2024-03-12

    申请号:US17378612

    申请日:2021-07-16

    Abstract: The present disclosure relates to a method for photometrical charting of a light source (Q, 3) clamped within a positioning device (1) and stationary relative to an object coordinate system (T) by means of a luminance density measurement camera (4) arranged stationary relative to a world coordinate system (W), wherein the light source (Q, 3) is moved between a first actual measurement position (P1′) and at least one further actual measurement position (P2′ to P5′) along a kinematic chain of the positioning device (1) within the world coordinate system (W), wherein a luminance density measurement image (81 to 85) describing the spatial distribution of a photometric characteristic within a measurement surface is recorded by means of the luminance density measurement camera (4) in each actual measurement position (P1′ to P5′) with the light source (Q, 3) turned on, and wherein the position and/or orientation of the object coordinate system (T) relative to the world coordinate system (W) is recorded in each actual measurement position (P1′ to P5′) in direct reference to the world coordinate system (W) without reference to the kinematic chain of the positioning device (1). Moreover, the present disclosure relates to the use of such a method for photometric charting of a headlight (3).

Patent Agency Ranking