Abstract:
A voltage conversion apparatus includes a booster circuit, a boost stop circuit, a Zener diode, and a capacitor. The boost stop circuit includes a transistor. When an overvoltage equal to or larger than a breakdown voltage of the Zener diode is output to an output line of the booster circuit, the Zener diode is turned on. Accordingly, the transistor is turned on and a switching element is turned off to stop a boost operation. Further, the capacitor is charged through the Zener diode. Even when the Zener diode is turned off due to a drop in the output voltage after the stop of the boost operation, the transistor maintains its on state for a certain time by discharge of the capacitor. Thus, the stop of the boost operation is continued.
Abstract:
A voltage conversion apparatus includes a booster circuit, a boost stop circuit, a Zener diode, and a capacitor. The boost stop circuit includes a transistor. When an overvoltage equal to or larger than a breakdown voltage of the Zener diode is output to an output line of the booster circuit 11, the Zener diode is turned on. Accordingly, the transistor is turned on and a switching element is turned off to stop a boost operation. Further, the capacitor is charged through the Zener diode. Even when the Zener diode is turned off due to a drop in the output voltage after the stop of the boost operation, the transistor maintains its on state for a certain time by discharge of the capacitor. Thus, the stop of the boost operation is continued.
Abstract:
A DC-DC converter includes a voltage conversion circuit boosting a voltage of a DC power supply and supplying the voltage to a load, a bypass circuit provided in parallel to the voltage conversion circuit, a drive circuit turning on and off a switching element of the bypass circuit, and a controller outputting a control signal for controlling the voltage conversion circuit and the drive circuit. A diode is connected in parallel to the switching element so as to be oriented toward a forward direction with respect to the DC power supply. A temperature detector of the drive circuit detects temperature of the diode. The drive circuit maintains the switching element in the on state irrespective of the control signal of the controller when the temperature detector detects a temperature greater than or equal to a predetermined value.
Abstract:
A DC-DC converter includes a voltage conversion circuit boosting a voltage of a DC power supply and supplying the voltage to a load, a bypass circuit provided in parallel to the voltage conversion circuit, a drive circuit turning on and off a switching element of the bypass circuit, and a controller outputting a control signal for controlling the voltage conversion circuit and the drive circuit. A diode is connected in parallel to the switching element so as to be oriented toward a forward direction with respect to the DC power supply. A temperature detector of the drive circuit detects temperature of the diode. The drive circuit maintains the switching element in the on state irrespective of the control signal of the controller when the temperature detector detects a temperature greater than or equal to a predetermined value.
Abstract:
Since a compound represented by formula (I) wherein all of the symbols are the same as defined in the specification, a salt thereof, a solvate thereof, a prodrug thereof, a mixture with a diastereomer thereof in an arbitrary ratio, or a cyclodextrin clathrate thereof have a contracting activity of bladder detrusor and a relaxing activity of urethral sphincter, they can ameliorate bladder contraction dysfunction and/or urethral relaxation dysfunction, and for example, are effective for underactive bladder. Additionally, the compound of the present invention has little risk of side effects on the urinary system, the circulatory system and the digestive system, and exhibits excellent pharmacokinetics, such as oral absorbability etc. Therefore, the compound of the present invention is useful as a superior agent for preventing, treating and/or ameliorating underactive bladder.
Abstract:
An EP2 agonist which may have an EP3 agonistic effect has an effect of regenerating and/or protecting nerves, and is therefore useful as a therapeutic agent for a disease of the peripheral nervous system, such as a lower or upper motor neuron disease, a nerve root disease, plexopathy, thoracic outlet compression syndrome, peripheral neuropathy, neurofibromatosis and neuromuscular transmission disease. An EP2 agonist which has an EP3 agonistic effect is a safe and effective agent for the regeneration and/or protection of nerves which has little influence on the circulatory system.
Abstract:
A device and method for obtaining information of a capability of an apparatus that is connected with a computer or a capability of an apparatus that is used in a printing process in which the computer is used; determining functions that become invalid, from among functions that have been set in a received print job, based on the information of the capability of the apparatus and printing conditions that a print job editing program has; and displaying a list of the functions that become invalid, and is used to confirm a cancellation of the setting of the functions that become invalid.
Abstract:
A cuprous oxide fine particle production method includes a production step of producing cuprous oxide fine particles using copper compound powder and a thermal plasma flame. The thermal plasma flame is derived from an inert gas. The production step includes a step of supplying into the thermal plasma flame, the copper compound powder dispersed using a carrier gas or slurry obtained by dispersing the copper compound powder in water in the form of droplets. The production step preferably further includes a step of supplying a cooling gas to an end portion of the thermal plasma flame.
Abstract:
An EP2 agonist which may have an EP3 agonistic effect has an effect of regenerating and/or protecting nerves, and is therefore useful as a therapeutic agent for a disease of the peripheral nervous system, such as a lower or upper motor neuron disease, a nerve root disease, plexopathy, thoracic outlet compression syndrome, peripheral neuropathy, neurofibromatosis and neuromuscular transmission disease. An EP2 agonist which has an EP3 agonistic effect is a safe and effective agent for the regeneration and/or protection of nerves which has little influence on the circulatory system.
Abstract:
A DC-DC converter includes a voltage converter circuit having an FET 1, a short-circuit protection FET 3 that blocks a large current from flowing in the voltage converter circuit when a short-circuit failure occurs in the FET 1 or capacitors, and a detector that detects a short-circuit failure in the FET 1 or the capacitors to turn off the FET 3. The FET 1 is connected to a power supply line and also in series to the FET 3. The capacitors are connected to the power supply line and to a connection point between the FET 1 and FET 3. The detector detects a failure on the basis of the voltage at the connection point.