摘要:
A radio communication system includes a network and a user terminal, wherein the network includes a plurality of radio stations and a controller which controls the plurality of radio stations, wherein at least two of the plurality of radio stations communicate with the user terminal, wherein the controller notifies the user terminal of information about resource for interference measurement, wherein the user terminal calculates and reports channel quality information based on the information.
摘要:
Provided is a technique capable of reporting resource block allocation information with no waste when an allocated resource block is reported, because in the current LTE downlink, the waste of the amount of resource allocation information increases in some cases since a restriction is imposed such that 37-bit fixed scheduling information is transmitted. A resource block group consisting of at least one or more resource blocks continuous on the frequency axis is allocated to a terminal, and the number of controlling signals for reporting allocation information indicating the allocated resource blocks is determined.
摘要:
Provided is a wireless communication technique capable of supporting communication using a single component carrier, and communication using a plurality of component carriers. The communication using the plurality of carriers comprises a processing means for performing the signal processing in accordance with each of the carriers with respect to the common signal sequence used by the plurality of carriers. The present invention makes it possible to cope with the communication employing a single component carrier and the wireless communication employing a plurality of the component carriers. Further, PAPR of the reference signals can be made small because there is no possibility that the identical CAZAC sequence is used among the component carriers when a plurality of the component carriers are employed.
摘要:
An object of the present invention is to reduce the amount of calculation performed in a mobile station and amount of information exchanged between a base station and mobile station in a mobile communication system where the base station autonomously assigns a scramble code. In the mobile communication system, the base station starts communication by using a predetermined initialization scramble code used only at its activation time. The mobile station positioned in a cell determines whether the scramble code identified upon cell search time is the initialization scramble code. Only when the scramble code is the initialization scramble code, the mobile station determines a candidate scramble code, determines whether the candidate scramble code is usable in communication, and notifies the base station of the control information including the determination result. Based on the control information, the base station determines a service scramble code to be used, from the candidate scramble codes, and applies the service scramble code to start communication.
摘要:
Provided is a wireless communication technique capable of supporting communication using a single component carrier, and communication using a plurality of component carriers. The communication using the plurality of carriers is characterized by using a different signal sequence in each of the carriers, and using the signal sequences as reference signals. The present invention makes it possible to cope with the communication employing a single component carrier and the wireless communication employing a plurality of the component carriers. Further, PAPR of the reference signals can be made small because there is no possibility that the identical CAZAC sequence is used among the component carriers when a plurality of the component carriers are employed.
摘要:
Provided is a technique capable of reporting resource block allocation information with no waste when an allocated resource block is reported, because in the current LTE downlink, the waste of the amount of resource allocation information increases in some cases since a restriction is imposed such that 37-bit fixed scheduling information is transmitted. A resource block group consisting of at least one or more resource blocks continuous on the frequency axis is allocated to a terminal, and the number of controlling signals for reporting allocation information indicating the allocated resource blocks is determined.
摘要:
The problem is that, in a mobile wireless system, when more than one frequency block composed of resource blocks that are consecutive on a frequency axis is assigned to one mobile station, the multi-diversity effect due to scheduling increases by the number of assigned frequency blocks being increased, but the overhead caused by the scheduling information increases. Accordingly, there is a tradeoff between the multi-diversity effect and the scheduling overhead. However, when the aforementioned tradeoff was considered with OFDM and SC-FDMA, the same fixed number of frequency blocks would have been used for all mobile stations. Accordingly, an optimization that takes into account the tradeoff between the multi-diversity effect and scheduling overhead has not been sufficiently achieved. In a wireless communication system, the maximum frequency block number, which is the maximum number of the aforementioned frequency blocks assigned to the same mobile station, is set based on system information, which is information pertaining to the base station installation environment and the mobile station or the mobile station's communication status, and the base station assigns no more resource blocks than the aforementioned maximum frequency block number.
摘要:
An object of the present invention is to reduce the amount of calculation performed in a mobile station and amount of information exchanged between a base station and mobile station in a mobile communication system where the base station autonomously assigns a scramble code. In the mobile communication system, the base station starts communication by using a predetermined initialization scramble code used only at its activation time. The mobile station positioned in a cell determines whether the scramble code identified upon cell search time is the initialization scramble code. Only when the scramble code is the initialization scramble code, the mobile station determines a candidate scramble code, determines whether the candidate scramble code is usable in communication, and notifies the base station of the control information including the determination result. Based on the control information, the base station determines a service scramble code to be used, from the candidate scramble codes, and applies the service scramble code to start communication.
摘要:
A reference signal of a user equipment to which a resource (LB#1) is allocated for a L1/L2 control signal, is allocated a resource (SB#1) that is closer on the time axis to the resource (LB#1), which the L1/L2 control signal is allocated, within the same frequency band as the L1/L2 control signal. A reference signal for CQI estimation, independent of a data signal and a L1/L2 control signal, is allocated a resource with which at least one of a reference signal for demodulation of a data signal and a reference signal for demodulation of a L1/L2 control signal is not transmitted at the same timing within the transmission band. The types of bandwidths of the reference signals multiplexed in a same short block within a same band are reduced, whereby restrictions as to the number of reference signal sequences that can be secured are diminished.
摘要:
A channel quality measurement method that accomplishes efficient channel quality measurement for each mobile station is presented. In a frequency band including a plurality of frequency blocks, a base station measures the channel quality of each of a plurality of mobile stations. With respect to each mobile station, when a pilot resource for demodulation is not allocated in at least one of the frequency blocks, the base station allocates a specific pilot resource for channel quality measurement in that frequency block. The channel quality of each mobile station in the plurality of frequency blocks is measured by using one or both of the pilot resource for demodulation and the dedicated pilot resource for channel quality measurement.