摘要:
A semiconductor structure includes a substrate, a barrier layer disposed over the substrate, a grid disposed over the barrier layer, and a first color filter disposed over the barrier layer. The semiconductor structure also includes a second color filter disposed over the substrate and laterally surrounded by and contacting the grid. The semiconductor structure further includes a dielectric layer disposed between the barrier layer and the substrate. The barrier layer includes an upper surface overlapping the grid and the first color filter and a bottom surface substantially level with a bottom surface of the second color filter. The dielectric layer includes a first portion overlapping a bottom surface of the first color filter and a second portion overlapping a bottom surface of the second color filter, wherein non-visible light is allowed to pass from the second color filter to the substrate through the second portion of the dielectric layer.
摘要:
A photosensitive unit and a photo-insensitive unit are formed in a substrate. A lens is formed to cover the photosensitive unit and the photo-insensitive unit, and the lens has a single radius of curvature and an optical axis passing through a surface of the curvature at the center of the lens. The photosensitive unit is disposed at a first side of the optical axis and the photo-insensitive unit is disposed at a second side opposite to the first side of the optical axis, a light beam passing through the lens is simultaneously incident into the photosensitive unit and the photo-insensitive unit without being blocked, and the photosensitive unit detects the light beam while the photo-insensitive unit is ineffective in sensing the light beam. A conductive feature is formed over the substrate between the photosensitive unit and the photo-insensitive unit, wherein the optical axis of the lens passes the conductive feature.
摘要:
The present disclosure provides an integrated circuit device comprising a substrate having a back surface and a sensing region disposed in the substrate and being operable to sense radiation projected towards the back surface of the substrate. The device further includes a waveguide disposed over the back surface of the substrate. The waveguide is aligned with the sensing region such that the waveguide is operable to transmit the radiation towards the aligned sensing region. The waveguide includes a waveguide wall, and an inner region disposed adjacent to the waveguide wall. A diffractive index of the waveguide wall is less than a diffractive index of the inner region.
摘要:
A photosensitive unit and a photo-insensitive unit are formed in a substrate. A lens is formed to cover the photosensitive unit and the photo-insensitive unit, and the lens has a single radius of curvature and an optical axis passing through a surface of the curvature at the center of the lens. The photosensitive unit is disposed at a first side of the optical axis and the photo-insensitive unit is disposed at a second side opposite to the first side of the optical axis, a light beam passing through the lens is simultaneously incident into the photosensitive unit and the photo-insensitive unit without being blocked, and the photosensitive unit detects the light beam while the photo-insensitive unit is ineffective in sensing the light beam. A conductive feature is formed over the substrate between the photosensitive unit and the photo-insensitive unit, wherein the optical axis of the lens passes the conductive feature.
摘要:
A semiconductor structure includes a substrate including a first side and a second side disposed opposite to the first side and configured to receive an electromagnetic radiation, a barrier layer disposed over the second side of the substrate, a color filter disposed over the barrier layer, and a grid surrounding the color filter and disposed over the barrier layer, wherein the barrier layer is configured to absorb or reflect non-visible light in the electromagnetic radiation, and the barrier layer is disposed between the grid and the substrate.
摘要:
The present disclosure provides an integrated circuit device comprising a substrate having a back surface and a sensing region disposed in the substrate and being operable to sense radiation projected towards the back surface of the substrate. The device further includes a waveguide disposed over the back surface of the substrate. The waveguide is aligned with the sensing region such that the waveguide is operable to transmit the radiation towards the aligned sensing region. The waveguide includes a waveguide wall, and an inner region disposed adjacent to the waveguide wall. A diffractive index of the waveguide wall is less than a diffractive index of the inner region.