Abstract:
A brake hydraulic pressure generator is proposed which is simple in structure and can suppress fluctuations in the brake pedal operating amount due to fluctuations in the amount of brake fluid consumed in the brake circuit. The brake hydraulic pressure generator includes an input shaft operated by a brake pedal, a stroke simulator for imparting a stroke and a reaction force corresponding to the brake pedal operating amount to the input shaft, a master cylinder for generating brake hydraulic pressure, and a pressure detector member for applying a reaction force corresponding to the hydraulic pressure in the master cylinder to a valve member of the control valve. The reaction force is transmitted through the pressure detector member to the control member. The input to the brake pedal is transmitted to the control valve through the stroke simulator so as to oppose the reaction force. The control valve operates to balance the reaction force and the input.
Abstract:
A hydraulic brake apparatus for a vehicle includes a supplementary hydraulic pressure source outputting a pressurized output hydraulic pressure and an electronic control apparatus that controls a hydraulic pump in the supplementary hydraulic pressure source. The electronic control apparatus judges whether the hydraulic pump satisfies a predetermined operating condition based on the output hydraulic pressure of the supplementary hydraulic pressure source or not. The electronic control apparatus compares the output hydraulic pressure with a minimum standard hydraulic pressure, detects a drop in the output hydraulic pressure when the output hydraulic pressure is less than a standard hydraulic pressure and determines that the hydraulic pump does not satisfy the predetermined operating condition.
Abstract:
An auxiliary hydraulic pressure source device for use with an antilock brake system in a vehicle includes an accumulator that can be reduced in size without deteriorating the performance of the vehicle brakes. The auxiliary hydraulic pressure source device also includes a hydraulic pump for delivering brake fluid into a high-pressure brake fluid output line. A first one-way valve connects this output line with the accumulator only when the hydraulic pressure inside the output line exceeds the hydraulic pressure inside the accumulator by more than a given value .DELTA.P. A second one-way valve connects the accumulator with the output line only when the hydraulic pressure inside the output line is lower than the hydraulic pressure inside the accumulator.
Abstract:
An auxiliary vehicle hydraulic pressure source device includes a hydraulic pressure pump pressurizing and discharging fluid, an accumulator accumulating fluid pressurized and discharged by the hydraulic pressure pump, a hydraulic pressure detector continuously detecting the accumulator hydraulic pressure, and a controller controlling operation of the hydraulic pressure pump based on a comparison of the detection result of the hydraulic pressure detector with a predetermined target pressure. The controller includes a pressure difference calculator calculating the pressure difference between the detection result of the hydraulic pressure detector and the predetermined target pressure, a pressure change calculator calculating a pressure change of the accumulator hydraulic pressure per unit time based on the detection result of the hydraulic pressure detector, and an adjusting device adjusting operation of fluid accumulated in the accumulator by operation of the hydraulic pressure pump based on the pressure difference and the pressure change.
Abstract:
The present invention is directed to a brake control system for an electrically operated vehicle, which is adapted to reduce a regenerative braking torque and add a hydraulic braking force. A motor control unit is provided for controlling an electric motor to apply a rotating force to a wheel and apply the regenerative braking torque to the wheel. A pressure control device is provided for controlling a hydraulic braking pressure generated by a pressure generator in response to operation of a manually operated braking member, and supplied to a wheel brake cylinder, which is operatively mounted on the wheel for applying a hydraulic braking force to the wheel. The regenerative braking torque is reduced in response to a braking condition monitored by a monitor. A pressure difference is detected between the hydraulic braking pressure of the brake fluid discharged from the pressure generator and the hydraulic braking pressure in the wheel brake cylinder. And, a characteristic of the regenerative braking torque to be reduced is modified in response to the pressure difference, to compensate for lack of regenerative braking torque by the hydraulic braking force, smoothly.
Abstract:
The present invention is directed to a brake control system for an electrically operated vehicle which is adapted to reduce a regenerative braking torque and add a hydraulic braking force to compensate for lack of the regenerative braking torque, when voltage of a battery exceeds an upper limit. A motor control unit is provided for controlling an electric motor to apply a rotating force to a wheel and apply the regenerative braking torque to the wheel. A pressure control device is provided for supplying pressurized brake fluid to a wheel brake cylinder in response to operation of a manually operated braking member to apply the hydraulic braking force to the wheel. A reducing device is provided for reducing the regenerative braking torque when the voltage of the battery exceeds a predetermined upper limit. And, a compensation device is provided for actuating the pressure control device to supply the pressurized brake fluid to the wheel brake cylinder when the regenerative braking torque reduced by the reducing device exceeds a predetermined level, e.g., when a rate for reducing the regenerative braking torque exceeds a predetermined rate, or when a reduced amount of the regenerative braking torque exceeds a predetermined amount.
Abstract:
A throttle control apparatus for use with an automotive internal combustion engine. The apparatus assures that the drive wheels are stopped from spinning on a snowy road surface if the driver pushes down on the accelerator pedal. The apparatus comprises an accelerator operation mechanism including the accelerator pedal, a first throttle-driving means capable of opening and closing the throttle valve, a controller, a second driving means, and a fuel-cutting means. The first throttle-driving means is mounted independent of the accelerator operation mechanism and includes a driving plate, a clutch plate, and a movable yoke. The controller controls the first throttle-driving means to adjust the throttle opening. When the first throttle-driving means becomes inoperative, the throttle valve can be driven by the accelerator operation mechanism via the second throttle-driving means. The fuel-cutting means is operated when excessive spin of the drive wheels is detected.
Abstract:
A throttle control apparatus for an internal combustion engine has a throttle opening and closing arrangement for opening and closing a throttle valve. The arrangement is biased in the throttle valve closing direction. An accelerator actuating mechanism, a driving element capable of driving the throttle opening and closing arrangement in the throttle valve opening and closing directions independently of the accelerator actuating mechanism, a driving source coupled to the driving element to drive it to rotate in response to the operation of the accelerator actuating mechanism, and a clutch for connecting and disconnecting the throttle opening and closing arrangement and the driving element. The throttle control apparatus includes a first detector for outputting a signal corresponding to the accelerator actuating quantity provided by the accelerator actuating mechanism, a second detector for outputting a signal corresponding to the degree of opening of the throttle valve, and a controller for driving the clutch to disconnect the throttle opening and closing arrangement and the driving element from each other when the output signal from the first detector indicates an accelerator actuating quantity not greater than a predetermined accelerator actuating quantity and the output signal from the second detector is a predetermined angle greater than the degree of opening of the throttle valve corresponding to the accelerator actuating quantity not greater than the predetermined accelerator actuating quantity.
Abstract:
A first input member (6) is rotatably mounted to a shaft (2). The first input member (6) is linked with an accelerator pedal (25). An output member (3) is tightly secured to the shaft (2). The output member (3) is linked with a throttle valve (24). An intermediate member (7) is also rotatably mounted to the shaft (2). The intermediate member (7) is linked with the output member by a spring member (8). The first input member (6) drives the output member (3) through the intermediate member (7) in response to an operation of the accelerator pedal (25). A driving means (11) is connected to the shaft (2) through the reduction mechanism (13). The driving means (11) rotates the shaft (2) and drives the output member (3) in order to open or close the throttle valve (24).
Abstract:
A control device for a driven member includes a first input member connected to a manual member, an output member connected to a driven member, a middle member connected to the first input member through a first spring and having a first portion to be engageable therewith and a second portion to be engageable with the output member thereby to transmit the movement of the first input member to the output member through the middle member. The device further includes a second input member for moving the output member in operative and inoperative directions of the driven member and an actuator actuating the second input member wherein when the second input member is actuated by the actuator to move the output member in a direction where the driven member returns to the original position, the movement of the first input member will not affect the movement of the output member.