Abstract:
A trace detection device including: an ion mobility tube ; a sampling gas path module ; a sample injection gas path module configured to introduce a sample carrier gas containing a sample collected by the sampling gas path module toward the ion mobility tube; and a gas chromatography apparatus capable of pre-separating the sample carrier gas, so as to form a pre-separated sample carrier gas; wherein the sample injection gas path module is further configured to be capable of switching between a first mode and a second mode, in the first mode, the sample injection gas path module introduces the sample carrier gas into the ion mobility tube; and in the second mode, the sample injection gas path module introduces the sample carrier gas into the gas chromatography apparatus to pre-separate the sample carrier gas, and the pre-separated sample carrier gas is introduced into the ion mobility tube.
Abstract:
Embodiments of the present disclosure provide a gas purifying device and an ion migration spectrometer. The gas purifying device includes a first purificant vessel, a second purificant vessel and a valve communicated between the first purificant vessel and the second purificant vessel. The valve is configured to allow a gas flows from the second purificant vessel to the first purificant vessel in a first state and to permit the gas to flow from the first purificant vessel to the second purificant vessel in a second state.
Abstract:
Embodiments of the present disclosure disclose a multi-output high-voltage power supply including a channel selection circuit (103) including a plurality of switches; and a high-voltage power supply module (101) connected to the channel selection circuit (103), wherein the high-voltage power supply module (101) includes a fine adjusting power supply component (110) and a plurality of coarse adjusting power supply components (120-1 to 120-N) connected in series, wherein one high-voltage output terminal of the high-voltage power supply module (101) is connected to a common terminal of the channel selection circuit (103), and the other high-voltage output terminal of the high-voltage power supply module (101) is grounded through a current sampling resistor.
Abstract:
The present disclosure discloses a vehicle-mounted type back scattering inspection system. The vehicle-mounted type back scattering inspection system includes a carriage and a back scattering imaging device, the scanning range of the back scattering imaging device is variable. As the scanning range of the back scattering imaging device of the present disclosure is variably set, the inspection range of the back scattering imaging device can be expanded.
Abstract:
A fork-arm lift tractor includes a vehicle body, a supporting plate disposed above the vehicle body, a lifting device for driving the supporting plate to be lifted, a front and rear fork-arm assemblies, a front and rear fork-arm drive assemblies. The front fork-arm assembly includes two front fork-arms rotatably disposed at the supporting plate. The rear fork-arm assembly includes two rear fork-arms rotatably disposed at the supporting plate, and the front and rear fork-arms may be deployed or retracted from both sides of the supporting plate. The front fork-arm driving assembly includes a front transmission part, and a front power device disposed at the supporting plate and may drive the front transmission part to move horizontally linearly so as to rotate the two front fork-arms. The rear fork-arm driving assembly has almost the same structure of the front fork-arm driving assembly and is used to rotate the two rear fork-arms.
Abstract:
The present application relates to a method, apparatus and system for inspecting an object based on a cosmic ray, pertaining to the technical field of radiometric imaging and safety inspection. The method includes: recording a movement trajectory of an inspected object by using a monitoring device; acquiring information of charged particles in the cosmic ray by using a position-sensitive detector, the information of charged particles comprising trajectory information of the charged particles; performing position coincidence for the movement trajectory and the trajectory information to determine the object; performing trajectory remodeling for the charged particles according to the information of charged particles; and identifying a material inside the moving object according to the trajectory remodeling. According to the present disclosure, pedestrians who are walking and moving are inspected by using the cosmic ray, and nuclear materials, drugs and explosive materials and the like carried by human bodies may be detected.
Abstract:
The present invention provides a method and apparatus for processing signals of a semiconductor detector, including: acquiring a relationship of a time difference between anode and cathode signals of the semiconductor detector with an anode signal amplitude; obtaining an optimal data screening interval according to the relationship of the time difference between anode and cathode signals of the semiconductor detector with the anode signal amplitude, wherein the optimal data screening interval is an interval where the time difference between the anode and cathode signals is greater than 50 ns; and screening and processing the collected data according to the optimal data screening interval when the semiconductor detector collects data. The present invention better overcomes the inherent crystal defects of the detector, reduces the effect of background noise, increases the energy resolution of the cadmium zinc telluride detector under room temperature, and improves the peak-to-compton ratio.
Abstract:
A radiation protection device is disclosed in the embodiment of the present invention. The radiation protection device is used for a system which is configured to perform safety inspection of a cargo or a vehicle by a ray. The radiation protection device comprising: at least one container, and a radiation protection part disposed within the container. The radiation protection material may comprise at least one of concrete, sandstone, and water, or the radiation protection part may comprise a steel-lead protection wall or a concrete protection wall. With the radiation protection device according to the embodiment of the present invention, after the container is transported to the site, it can be directly put in place to be capable of shielding rays without needing operation or with only simple operation. The amount of on-site work, construction time, and construction cost are low.
Abstract:
A human body security inspection system including a plurality of ray emitting-detecting modules, which are configured to emit X-rays to the object to be inspected and to receive X-rays scattered from the object to be inspected, wherein the ray emitting-detecting modules form an enclosed region with respect to the object to be inspected and security inspection is implemented on the object in the enclosed region.
Abstract:
Provided are an odor sniffing device (11) and a vehicle-mounted security inspection apparatus for a container (1). The odor sniffing device (11) includes a primary sampling front end (116), which has a vent adapter (116-1) having a shape matching with a vent of the ventilator of the container, so that when the primary sampling front end (116) fits with the ventilator, the vent adapter (116-1) and the vent generally cooperate to achieve fluid communication. The vehicle-mounted security inspection apparatus (1) may perform imaging inspection and chemical inspection simultaneously.