摘要:
A system and method for autonomously tracing a cause of particle contamination during semiconductor manufacture is provided. A contamination analysis system analyzes tool process logs together with particle contamination data for multiple process runs to determine a relationship between systematic particle contamination levels and one or more tool parameters. This relationship is used to predict expected contamination levels associated with regular usage of the tool, and to identify which tool parameters have the largest impact on expected levels of particle contamination. The contamination analysis system also identifies process logs showing unexpected deviant particle contamination levels that exceed expected contamination levels, and traces the cause of the deviant particle contamination to particular process log parameter events.
摘要:
A system and method for autonomously tracing a cause of particle contamination during semiconductor manufacture is provided. A contamination analysis system analyzes tool process logs together with particle contamination data for multiple process runs to determine a relationship between systematic particle contamination levels and one or more tool parameters. This relationship is used to predict expected contamination levels associated with regular usage of the tool, and to identify which tool parameters have the largest impact on expected levels of particle contamination. The contamination analysis system also identifies process logs showing unexpected deviant particle contamination levels that exceed expected contamination levels, and traces the cause of the deviant particle contamination to particular process log parameter events.
摘要:
A system and method autonomously determines the impact of respective tool parameters on tool performance in a semiconductor manufacturing system. A parameter impact identification system receives tool parameter and tool performance data for one or more process runs of the semiconductor fabrication system and generates a separate function for each tool parameter characterizing the behavior of a tool performance indicator in terms of a single one of the tool parameters. Each function is then scored according to how well the function predicts the actual behavior of the tool performance indicator, or based on a determined sensitivity of the tool performance indicator to changes in the single tool parameter. The tool parameters are then ranked based on these scores, and a reduced set of critical tool parameters is derived based on the ranking. The tool performance indicator can then be modeled based on this reduced set of tool parameters.
摘要:
A system and method autonomously determines the impact of respective tool parameters on tool performance in a semiconductor manufacturing system. A parameter impact identification system receives tool parameter and tool performance data for one or more process runs of the semiconductor fabrication system and generates a separate function for each tool parameter characterizing the behavior of a tool performance indicator in terms of a single one of the tool parameters. Each function is then scored according to how well the function predicts the actual behavior of the tool performance indicator, or based on a determined sensitivity of the tool performance indicator to changes in the single tool parameter. The tool parameters are then ranked based on these scores, and a reduced set of critical tool parameters is derived based on the ranking. The tool performance indicator can then be modeled based on this reduced set of tool parameters.
摘要:
A system and method autonomously determines the impact of respective tool parameters on tool performance in a semiconductor manufacturing system. A parameter impact identification system receives tool parameter and performance data for one or more process runs of the semiconductor fabrication system and generates a separate function for each tool parameter characterizing the behavior of a tool performance indicator in terms of a single one of the tool parameters. Each function is then scored according to how well the function predicts the behavior of the tool performance indicator, or based on a determined sensitivity of the tool performance indicator to changes in the single tool parameter. The tool parameters are then ranked based on these scores, and a reduced set of critical tool parameters is derived based on the ranking. The tool performance indicator can then be modeled based on this reduced set of tool parameters.
摘要:
A system and method for autonomously tracing a cause of particle contamination during semiconductor manufacture is provided. A contamination analysis system analyzes tool process logs together with particle contamination data for multiple process runs to determine a relationship between systematic particle contamination levels and one or more tool parameters. This relationship is used to predict expected contamination levels associated with regular usage of the tool, and to identify which tool parameters have the largest impact on expected levels of particle contamination. The contamination analysis system also identifies process logs showing unexpected deviant particle contamination levels that exceed expected contamination levels, and traces the cause of the deviant particle contamination to particular process log parameter events.
摘要:
A system and method for autonomously tracing a cause of particle contamination during semiconductor manufacture is provided. A contamination analysis system analyzes tool process logs together with particle contamination data for multiple process runs to determine a relationship between systematic particle contamination levels and one or more tool parameters. This relationship is used to predict expected contamination levels associated with regular usage of the tool, and to identify which tool parameters have the largest impact on expected levels of particle contamination. The contamination analysis system also identifies process logs showing unexpected deviant particle contamination levels that exceed expected contamination levels, and traces the cause of the deviant particle contamination to particular process log parameter events.
摘要:
A system and method for autonomously determining the impact of respective tool parameters on tool performance in a semiconductor manufacturing system is provided. A parameter impact identification system receives tool parameter and tool performance data for one or more process runs of the semiconductor fabrication system and generates a separate function for each tool parameter characterizing the behavior of a tool performance indicator in terms of a single one of the tool parameters. Each function is then scored according to how well the function predicts the actual behavior of the tool performance indicator, or based on a determined sensitivity of the tool performance indicator to changes in the single tool parameter. The tool parameters are then ranked based on these scores, and a reduced set of critical tool parameters is derived based on the ranking. The tool performance indicator can then be modeled based on this reduced set of tool parameters.