Abstract:
The present invention belongs to the technical field of supported catalysts, and discloses a supported core-shell structured ZnO catalyst, and a preparation method and use thereof. With Al2O3 as a support and ZnO as active sites, the catalyst is characteristic of a NiZn@ZnO core-shell structure, which consists of a NiZn alloy core and a ZnO shell The preparation method comprises firstly dissolving Ni(NO3)3.6H2O and Zn(NO3)2.6H2O in deionized water; then impregnating Al2O3 with the solution described above, followed by uniform ultrasonic dispersion and complete drying; and finally the obtained solid is calcinated and reduced to obtain the target catalyst, which exhibits high activity, selectivity and stability. The catalyst can be used for the dehydrogenation of light alkanes to alkenes, especially in dehydrogenation of propane to propylene.
Abstract:
The present disclosure discloses a supported polymetallic oxide tandem catalyst, preparation method and application thereof, a surface of the support is supported with an oxide of metal A and then with metal vanadate nano-particles; and the oxide of metal A serves as a direct dehydrogenation catalytic site, and the metal vanadate nano-particles serve as a selective hydrogen combustion site. In the application of the tandem catalyst, dehydrogenation site and selective hydrogen combustion site are coupled at the nano-scale, and this coupling mechanism shifts the reaction equilibrium to the alkenes through the selective combustion of byproduct hydrogen, which effectively surpasses the thermodynamic limit; and meanwhile, the combustion of hydrogen releases chemical energy, and provides heat energy through direct heating, enabling the self-heating operation of the reaction. The present disclosure has the outstanding advantages of high single-pass conversion rate of light alkanes and high selectivity towards target product alkenes.
Abstract:
The present disclosure belongs to the technical field of electrochemical reactions, and discloses a photoelectrocatalytic reaction device for high-pressure environments and application thereof. An anode reactor and a cathode reactor have the same structure, are arranged in a mutual mirroring manner, and each include a reaction cavity and a cover plate. The reaction cavities are provided with round sapphire optics windows and connecting channels, and an ion exchange membrane is arranged between the connecting channels. The cover plates are provided with gas inlet pipeline connectors, gas outlet pipeline connectors, safety valves and pressure meters. Terminals are hermetically installed on the cover plates, metal copper rods are embedded into the terminals along central axes of the terminals, and inserting holes used for being connected with electrodes in an inserted manner are formed in bottoms of the metal copper rods. The device is especially suitable for analyzing properties of electrocatalytic.
Abstract:
The present application discloses a supported PtZn intermetallic alloy catalyst, a method for preparing the same and application thereof. The catalyst uses SiO2 as a support and Zn as a promoter, and a small amount of active component Pt is supported; the weight percentage of Pt is 0.025%-1%, and the weight percentage of Zn is 0.025%-1.7%, a co-impregnation method is adopted in preparation, the SiO2 support is impregnated in aqueous solution of chloroplatinic acid and zinc nitrate, and then drying and high-temperature reduction are performed to obtain a PtZn/SiO2 catalyst. The catalyst has the advantages of high activity, high stability, low price and low toxicity. The catalyst provided by the present application is applicable to preparation of alkene through short-chain alkane dehydrogenation, in particular to preparation of propylene through propane dehydrogenation in a hydrogen atmosphere. Under high-temperature conditions, the dehydrogenation activity is very high, the propylene selectivity can reach more than 90%, the stability is good, and the amount of used Pt is small, the utilization rate is high, and it is cheaper than industrial Pt series catalysts.
Abstract:
A catalyst including: a support, the support including a mixture of SiO2 and ZrO2; an active ingredient including copper; a first additive including a metal, an oxide thereof, or a combination thereof; and a second additive including Li, Na, K, or a combination thereof. The metal is Mg, Ca, Ba, Mn, Fe, Co, Zn, Mo, La, or Ce. Based on the total weight of the catalyst, the weight percentages of the different components are as follows: SiO2=50-90 wt. %; ZrO2=0.1-10 wt. %; copper=10-50 wt. %; the first additive=0.1-10 wt. %; and the second additive=0.1-5 wt. %.