Abstract:
A method for the individualized adaptation of the shape of components includes providing a basic material for producing the components. Next at least one unifying production method is selected. The components are then produced with a geometrically identical base shape by the unifying production method. Then at least one individualizing production method is selected. Then the shape of the components is adapted to at least two different final shapes by the individualizing production method that is different from the unifying production method. The final shape of each component differs from its basic shape.
Abstract:
A connector is disclosed for providing a positive and/or a non-positive connection between at least two connecting partners. The connector or connecting means has at least one first region which engages with the first connecting partner by way of a positive and/or a non-positive connection, and at least one second region is provided which engages with the at least second connecting partner by way of a positive and/or a non-positive connection. The connecting means provides a positive and/or non-positive connection between at least two connecting partners in a simple and inexpensive manner and which meets high safety requirements. The second region of the connecting means has a region which is formed from an at least partially flat material made of an Fe alloy with shape memory characteristics and which, when activated, ensures the positive and/or non-positive connection with the second connecting partner by way of a change in shape.
Abstract:
The invention relates to a method for producing a seamless pressure vessel for storing hydrogen and also to such a pressure vessel produced by the method. In order that such a pressure vessel withstands both very high internal pressures and pressure fluctuations as well as (low) temperatures and temperature fluctuations and also high mechanical loading from the outside, is resistant to embrittlement and is comparatively lightweight and can be produced cost-effectively, the invention proposes forming a round or tubular workpiece consisting of a multi-layer composite sheet metal material comprising a carrier layer made of steel material, preferably carbon steel, and a shielding layer resistant to hydrogen embrittlement by a flow forming process into a seamless hollow body, which serves as a semifinished product to be further processed into the seamless pressure vessel, wherein the workpiece is formed in such a manner that the shielding layer represents an inner layer of the pressure vessel, and in which the multi-layer composite sheet metal material or the workpiece is selected or produced with respect to the thickness of the shielding layer in such a way that, during the flow forming of the workpiece, the shielding layer is retained as a whole-area, uninterrupted layer.