摘要:
A signal processing method is provided. The signal processing method includes receiving, at a signal processing system, a signal of interest, calculating, using the signal processing system, a power spectral density for the signal of interest, calculating, using the signal processing system, a basis vector based on the power spectral density shape, performing, using the signal processing system, a linear regression using the basis vector to generate an estimate for at least one parameter of the signal of interest, and transmitting, based on the at least one generated estimate, a signal that avoids interference with the signal of interest.
摘要:
A method and apparatus for detecting signals. According to an embodiment, energy waves are received at a first receiver system and a second receiver system. The first receiver system generates first information using the energy waves received at the first receiver system. The first receiver system receives second information generated using the energy waves received at the second receiver system from the second receiver system. The first receiver system identifies desired information about a repetitive portion of a signal carried in the energy waves received at the first receiver system using the first information and the second information.
摘要:
A collision avoidance system comprises a pair of video cameras mounted to a vertical stabilizer of the aircraft, a machine vision processing unit, and a system to inform the pilots of a potential collision. The machine vision processing unit is configured to process image data captured by the video cameras using stereoscopic and structure from motion techniques to detect an obstacle that is near or in the path of the aircraft. Estimates of the range to the object and the rate of change of that range are computed. With the range and range rate, a time to collision can be estimated toward every point of the aircraft. A pilot warning can be sounded based on the nearness of the potential collision. A method of calibrating the video cameras using existing feature points on the top of the aircraft is initiated in response to power being turned on.
摘要:
A bistatic radar system may include a transmitter, a target at a first known position, a receiver at a second known position, and a transmitter position determination unit. The receiver is configured to receive one or more reflected radar signals transmitted from the transmitter and reflected off the target. The receiver is configured to receive one or more direct radar signals transmitted from the transmitter. The transmitter position determination unit is configured to determine a position of the transmitter based on a determination of a distance between the first and second known positions and a determination of a first angular difference between the reflected radar signal(s) and the direct radar signal(s) that are received by the receiver.
摘要:
A method for generating pulse descriptor words (PDWs) including frequency and/or bandwidth data from time-varying signals received by a sensor includes filtering, at a plurality of blind source separation (BSS) modules, signals derived from the time-varying signals, each BSS module including a filtering subsystem having a plurality of filter modules. Each filter module has a frequency filter coefficient (α) and is parameterized by a center frequency (f). The method also includes transmitting at least one blind source separated signal from the BSS modules to a PDW generation module communicatively coupled to the filtering subsystem. The method further includes generating, using the PDW generation module and based on the blind source separated signal, at least one PDW parameter vector signal containing the frequency data. The method also includes updating, upon generating and based on the PDW parameter vector signal, values of α and/or f for each filter module.
摘要:
A method of spatially filtering signal parameter vector data includes receiving, at a computing device, a first signal parameter vector at a first time and a second signal parameter vector at a second time occurring after the first time. The first and second signal parameter vectors are derived from a plurality of signals received at a sensor, and include first and second signal data blocks, respectively. The method also includes transmitting, to at least a first and second element of an array data structure representative of a physical spatial domain, the first and second signal data blocks, respectively, and determining an elliptical error region probability object having a center and a pair of axes containing the first and second signal data blocks. The center represents a highest probability location of a signal emitter at the second time and the pair of axes represents the spatial error of the center.
摘要:
A wire inspection system is provided. The wire inspection system includes a mirror assembly including an odd number of sides arranged to form a pyramid structure configured to surround a wire segment, wherein a plurality of the sides include a mirror, a light source configured to illuminate the wire segment, and at least one camera configured to acquire a plurality of images of the wire segment that are reflected by the plurality of mirrors, wherein each image of the plurality of images shows a different side of the wire segment.
摘要:
A method of spatially filtering signal parameter vector data includes receiving, at a computing device, a first signal parameter vector at a first time and a second signal parameter vector at a second time occurring after the first time. The first and second signal parameter vectors are derived from a plurality of signals received at a sensor, and include first and second signal data blocks, respectively. The method also includes transmitting, to at least a first and second element of an array data structure representative of a physical spatial domain, the first and second signal data blocks, respectively, and determining an elliptical error region probability object having a center and a pair of axes containing the first and second signal data blocks. The center represents a highest probability location of a signal emitter at the second time and the pair of axes represents the spatial error of the center.
摘要:
A method for generating pulse descriptor words (PDWs) including frequency and/or bandwidth data from time-varying signals received by a sensor includes filtering, at a plurality of blind source separation (BSS) modules, signals derived from the time-varying signals, each BSS module including a filtering subsystem having a plurality of filter modules. Each filter module has a frequency filter coefficient (α) and is parameterized by a center frequency (f). The method also includes transmitting at least one blind source separated signal from the BSS modules to a PDW generation module communicatively coupled to the filtering subsystem. The method further includes generating, using the PDW generation module and based on the blind source separated signal, at least one PDW parameter vector signal containing the frequency data. The method also includes updating, upon generating and based on the PDW parameter vector signal, values of α and/or f for each filter module.
摘要:
A method for spatially filtering data includes receiving a plurality of signal parameter vectors including spatial-type information derived from a sensor and associated with a signal emitter, determining error magnitudes of a plurality of first and second coordinates, and transmitting the plurality of coordinates to at least two arrays of differing sparsity in an array data structure when the error magnitudes differ by a predetermined amount, where each array is representative of a physical spatial domain from which a plurality of signals are received by the sensor. The method also includes determining a plurality of elliptical error region probability objects representative of probability density functions of the plurality of coordinates, where each object is stored in association with at least one of the at least two arrays, and determining an intersection region between the plurality of objects that is representative of a location of the signal emitter.