Abstract:
A method for producing an IC card including filling a confined space with a mixture including a foaming resin, the mixture having not been foamed yet, the space being confined by a frame having cut-out portions on inner edges and at least one through-hole passing through the frame in the lateral direction between the inside and the outside of the frame, a circuit board on which functional components are mounted and having edges fitted to one of the cut-out portions of the frame so that the surface of the circuit board on which functional components are mounted faces inward, the frame and the circuit board forming a substantially flat outer surface, and a thin plate having edges fitted to another of the cut-out portions of the frame with the thin plate opposing the circuit board, the frame and the thin plate forming a substantially flat outer surface; foaming the mixture at a predetermined temperature for a predetermined time, thus filling the confined space with foamed resin, and thus making the foamed resin a structural member having mechanical strength, molding the frame, the circuit board, and the thin plate into one body; and removing excess foamed resin from the through-hole in the frame.
Abstract:
An IC card includes: a circuit board on which functional components are mounted; and a frame covered with a thin plate, the circuit board being disposed in the frame, the inside of the frame being filled with a foamed resin. As a result of the above arrangement, an IC card having a strong resistance to various external forces is produced. Furthermore, because it is possible to incorporate a surface material with a design in an integrally molded device, thus it is also possible to produce an IC card device having an excellent appearance.
Abstract:
An IC card comprises a card board having first and second major surfaces and a semiconductor module having an electrode terminal face. The semiconductor module is mounted in the card board, so that the electrode terminal face is exposed onto the first major surface of the card board. The card board comprises a board frame and a resin which is molded inside the board frame. Part of the semiconductor module surface which is opposite to the electrode terminal face, is covered with the resin.
Abstract:
An IC card production method includes the steps of mounting a card board (12) having a through opening onto a lower mold (16) of molding dies (15), mounting a semiconductor module (2) onto the opening of said card board (12), tightening an upper die (17) of the molding dies (15) having a gate (19) onto a lower die (16), and molding by injecting resin (13) into the opening from the gate (19) in a state in which only an electrode terminal face (7) for external connection of the semiconductor module (2) is exposed. The IC card includes a card board (12) having a through opening, a semiconductor module (2) mounted onto this opening, and a molded resin (13) injected into said opening so that the resin moding is formed under such condition that only an electrode terminal face for external connection (7) of said semiconductor module (2) is made to expose.
Abstract:
In an IC card and a manufacturing method therefor, an adhesive is applied between core layers in the vicinity of an opening in which an IC module is placed. The core sheet layers held between adhesive layers can easily be deformed when heat and pressure are applied. Therefore, a gap formed between the card substrate and the IC module is filled. Furthermore, the gap from the IC module is narrower at the corners of the IC module than conventionally shaped openings. As a result, gaps at the corners of the IC module after integral molding are prevented. Therefore, the gap between the IC module and the card substrate can be reliably filled during molding.
Abstract:
A thin IC card includes a circuit board on which functional parts are mounted and a through-hole defining an edge of a battery lodging section in which a battery is disposed, the circuit board being embedded in a molding-resin section with the reverse surface of the board exposed. The battery lodging section is aligned with the through-hole of the circuit board. Electrical connections between the circuit board and the battery are effected in a recess or cutouts in the circuit board. The battery is embedded in the lodging section using an expandable resin to make the card surface flat.
Abstract:
An IC card module includes a substrate one side of which is provided with a connection terminal; and a resin-sealed semiconductor IC which has been previously sealed by a resin. This connection terminal and the resin-sealed semiconductor IC are electrically connected to each other and are covered with a molding resin. Accordingly, reliable modules can be efficiently manufactured and readily mounted on IC card substrates.
Abstract:
A method of producing a thin IC card having a built-in battery includes forming a through-hole including an edge in a circuit board having obverse and reverse main surfaces, a circuit pattern being present on a first of the main surfaces of the circuit board; mounting a functional part on the first of the main surfaces of the circuit board; molding said circuit board and said functional part in a resin with a second main surface of said circuit exposed and forming a battery lodging section in the resin molding defined by the through-hole; and mounting a battery in said battery lodging section and electrically connecting the circuit pattern to the battery.
Abstract:
In an IC card and a manufacturing method therefor, an adhesive is applied between core layers in the vicinity of an opening in which an IC module is placed. The core sheet layers held between adhesive layers can easily be deformed when heat and pressure are applied. Therefore, a gap formed between the card substrate and the IC module is filled. Furthermore, the gap from the IC module is narrower at the corners of the IC module than conventionally shaped openings. As a result, gaps at the corners of the IC module after integral molding are prevented. Therefore, the gap between the IC module and the card substrate can be reliably filled during molding.
Abstract:
An IC card includes a terminal board at one end of and projecting from an obverse side of the circuit board, an IC module mounted on the reverse side, all embedded in a plastic body with an electrode terminal exposed through the body.