Abstract:
Systems and techniques for detecting design problems in a circuit design are described. A higher-level abstraction of the circuit design can be synthesized to obtain a lower-level abstraction of the circuit design, and a mapping between signals in the higher-level abstraction and the signals in the lower-level abstraction. A design problem can be detected in the circuit design in response to determining that a possible glitch in a signal in the lower-level abstraction is not blocked when an enable signal is assigned a blocking value. The enable signal and the corresponding blocking value are identified by analyzing the higher-level abstraction.
Abstract:
Systems and techniques for detecting design problems in a circuit design are described. A higher-level abstraction of the circuit design can be synthesized to obtain a lower-level abstraction of the circuit design, and a mapping between signals in the higher-level abstraction and the signals in the lower-level abstraction. A design problem can be detected in the circuit design in response to determining that a possible glitch in a signal in the lower-level abstraction is not blocked when an enable signal is assigned a blocking value (the enable signal and the corresponding blocking value are identified by analyzing the higher-level abstraction).
Abstract:
Methods and apparatuses related to clock-domain-crossing (CDC) specific design mutations to model silicon behavior and measure verification robustness are described. CDC signal paths can be identified in a circuit design. Next, synchronization circuitry associated with the CDC signal paths can be identified. Design mutations can be added to the identified synchronization circuitry. The design mutations can then be used during functional verification to measure verification robustness of a circuit verification test suite.
Abstract:
Methods and apparatuses related to clock-domain-crossing (CDC) specific design mutations to model silicon behavior and measure verification robustness are described. CDC signal paths can be identified in a circuit design. Next, synchronization circuitry associated with the CDC signal paths can be identified. Design mutations can be added to the identified synchronization circuitry. The design mutations can then be used during functional verification to measure verification robustness of a circuit verification test suite.