Abstract:
Methods and apparatus are disclosed for processing received data in a multiple input multiple output (MIMO) communication system. A multiple antenna receiver can distinguish a MIMO transmission from other transmissions based on the detection of a predefined symbol following a legacy portion of a preamble. A preamble comprises a legacy portion and an extended portion. The legacy portion is comprised of a first long preamble followed by a first signal field and may be processed by both multiple antenna receivers and legacy receivers. The extended portion comprises the predefined symbol following the first signal field from the legacy portion. If the predefined symbol is a second long preamble, a MIMO transmission is detected by performing a correlation on the preamble to detect the second long preamble. If the predefined symbol is a second long signal field, a MIMO transmission is detected by performing a cyclic redundancy check to detect the second long signal field.
Abstract:
In one embodiment, a timing-offset estimator calculates a correlation value for each sample of an OFDM signal having a cyclic prefix for each OFDM symbol. The correlation value is provided to a tapped delay line that applies a separate weight to each of 2V correlation values, where V is the length of the cyclic prefix and the weights are based on a triangular weighting scheme that increases linearly from the first value, peaks at the Vth value, and decreases linearly to the 2Vth value. A stream of combined, squared correlation values is generated by combining and squaring the 2V weighted correlation values for each sample of the OFDM signal. For each cyclic prefix of the OFDM signal, a timing-offset estimate is determined based on a detected peak value in the stream of combined, squared correlation values. A timing-offset estimator with triangular weighting scheme may be implemented using recursive processing.
Abstract:
In one embodiment, a timing-offset estimator calculates a correlation value for each sample of an OFDM signal having a cyclic prefix for each OFDM symbol. The correlation value is provided to a tapped delay line that applies a separate weight to each of 2V correlation values, where V is the length of the cyclic prefix and the weights are based on a triangular weighting scheme that increases linearly from the first value, peaks at the Vth value, and decreases linearly to the 2Vth value. A stream of combined, squared correlation values is generated by combining and squaring the 2V weighted correlation values for each sample of the OFDM signal. For each cyclic prefix of the OFDM signal, a timing-offset estimate is determined based on a detected peak value in the stream of combined, squared correlation values. A timing-offset estimator with triangular weighting scheme may be implemented using recursive processing.
Abstract:
In one embodiment, the present invention generates a single rotation angle that may be used to maximize diversity of a quasi-orthogonal space-time block code that encodes groups of four data symbols. Two rotation angles corresponding the first two data symbols in a group are set to zero, and two rotation angles corresponding to the second two data symbols in a group are set to a single initial value. A codeword distance matrix is determined for each possible combination of codewords and erroneously decoded codewords that may be generated using the initial rotation angle, and the minimum of the determinants of these matrices is selected. This process is repeated to generate a plurality of minimum determinants, and, for each iteration, a different single rotation angle corresponding to the second two data symbols is used. Then, a single rotation angle is selected that corresponds to the maximum of the minimum determinants.
Abstract:
Methods and apparatus are provided for communicating data in a multiple antenna communication system having N transmit antennas. According to one aspect of the invention, a header format includes a legacy preamble having at least one legacy long training field and an extended portion having at least N additional long training fields on each of the N transmit antennas. The N additional long training fields may be tone interleaved across the N transmit antennas and are used for MIMO channel estimation. The extended portion may include a short training field for power estimation. The short training field may be tone interleaved across the N transmit antennas and have an extended duration to support beam steering.
Abstract:
In one embodiment, the present invention generates a single rotation angle that may be used to maximize diversity of a quasi-orthogonal space-time block code that encodes groups of four data symbols. Two rotation angles corresponding the first two data symbols in a group are set to zero, and two rotation angles corresponding to the second two data symbols in a group are set to a single initial value. A codeword distance matrix is determined for each possible combination of codewords and erroneously decoded codewords that may be generated using the initial rotation angle, and the minimum of the determinants of these matrices is selected. This process is repeated to generate a plurality of minimum determinants, and, for each iteration, a different single rotation angle corresponding to the second two data symbols is used. Then, a single rotation angle is selected that corresponds to the maximum of the minimum determinants.
Abstract:
Methods and apparatus are provided for improved efficiency in an extended multiple antenna communication system. A multiplier is employed on the number of points in the FFT that is greater than the multiplier on the frequency (bandwidth) of the legacy 802.11 a/g system. In one exemplary implementation, a 256 point FFT is employed in 40 MHz (with a 4N multiplier on the number of possible tones and a 2N multiplier on the frequency). While the efficiency for the OFDM symbol is improved, additional overhead is required in the preamble training (the length of the preamble is proportional to the number of tones in the FFT). Thus, a number of preamble constructs are provided that couple the improved efficiency with shorter preambles. In addition, an improved tone design provides additional efficiency gains.
Abstract translation:提供了用于在扩展的多天线通信系统中提高效率的方法和装置。 FFT中的点数大于传统802.11 a / g系统的频率(带宽)乘数的乘数。 在一个示例性实现中,在40MHz中采用256点FFT(对于可能音调的数量具有4N乘法器,并且在频率上具有2N乘法器)。 虽然改进了OFDM符号的效率,但在前同步码训练中需要额外的开销(前导码的长度与FFT中的音调数成正比)。 因此,提供了许多前导码结构,其将改进的效率与较短的前导码相结合。 此外,改进的音调设计提供了额外的效率增益。
Abstract:
An exemplary fast Fourier transform (FFT) numerology for an orthogonal frequency division multiple access (OFDMA) downlink transmission system is described. The exemplary FFT numerology reduces the FFT sampling rate for a given transmission bandwidth, thereby increasing the battery life of a UE. The FFT numerology increases robustness against Doppler spread, phase noise, and frequency offset, enabling operation in channels with high delay spread, such as occurs in mountainous regions. The described numerology might provide the following without altering standard sub-frame duration: increased intercarrier spacing; reduced FFT sampling frequency across the transmission bandwidths; reduced FFT size across all transmission bandwidths; increased number of OFDM symbols per sub-frame; and/or increased cyclic prefix length choices.
Abstract:
Methods and apparatus are provided for increasing data throughput in a multiple antenna communication system using additional subcarriers. The multiple antenna communication system includes at least one legacy system employing an N1 point fast Fourier transform (FFT) within a bandwidth, BW1. Data is transmitted using an N2 point inverse FFT within the bandwidth, BW1, wherein N2 is greater than N1; and subcarriers associated with the N2 point inverse FFT are employed to transmit the data. Data can also be transmitted using an N2 point inverse FFT within a bandwidth, BW2, wherein N2 is greater than N1 and the bandwidth, BW2, is greater than the bandwidth, BW1; and subcarriers associated with the N2 point inverse FFT are employed to transmit the data, wherein the employed subcarriers includes one or more additional subcarriers at outer edges of the bandwidth, BW1, relative to the legacy system and one or more additional subcarriers near DC relative to the legacy system.
Abstract:
Methods and apparatus are provided for per-antenna training in a multiple antenna communication system having a plurality of transmit antenna branches. A long training sequence is transmitted on each of the transmit antenna branches such that only one of the transmit antenna branches is active at a given time. The active transmit antenna branch is configured in a transmit mode during the given time and one or more of the inactive transmit antenna branches are configured in a receive mode during the given time. The transmit and receive modes are configured, for example, by applying a control signal to one or more switches.