Abstract:
There are provided embodiments for providing additional information. In one embodiment, an ultrasound system comprises: an ultrasound data acquisition unit configured to acquire first ultrasound data and second ultrasound data corresponding to a living body; and a processing unit configured to form a brightness mode image based on the first ultrasound data, set at least one sample volume on the brightness mode image, and form blood flow information corresponding to blood flow in the living body based on the second ultrasound data corresponding to the at least one sample volume, the processing unit being further configured to form additional information corresponding to a change of the blood flow with a time based on the blood flow information.
Abstract:
There are provided embodiments for providing additional information. In one embodiment, an ultrasound system comprises: an ultrasound data acquisition unit configured to acquire first ultrasound data and second ultrasound data corresponding to a living body; and a processing unit configured to form a brightness mode image based on the first ultrasound data, set at least one sample volume on the brightness mode image, and form blood flow information corresponding to blood flow in the living body based on the second ultrasound data corresponding to the at least one sample volume, the processing unit being further configured to form additional information corresponding to a change of the blood flow with a time based on the blood flow information.
Abstract:
Embodiments for ultrasound data processing in an ultrasound system are disclosed. In one embodiment, a mapping table, in which linear operation information is associated with a plurality of diagnostic modes, is stored in a storage unit. If there is an instruction to select at least one of the diagnostic modes, then an ultrasound data acquisition unit transmits/receives ultrasound signals to/from a target object to thereby acquire ultrasound data according to the selected diagnostic mode. A processing unit forms an ultrasound data matrix based on the ultrasound data and retrieves the linear operation information associated with the selected diagnostic mode from the mapping table to form linear operation matrices. Further, the processing unit performs a matrix operation of the ultrasound data matrix and the linear operation matrices.
Abstract:
The present invention relates to an ultrasound imaging device. The ultrasound imaging device includes: a data acquiring unit for acquiring 3-dimensional ultrasound image data based on receive signals formed based on ultrasound echoes reflected from a target object; a filtering unit for determining a size of a filtering mask of a filter, said size being adaptively determined according to an amount of the 3-dimensional ultrasound image data in data acquisition directions, the filtering unit being further configured to filter the 3-dimensional ultrasound image data by using the filtering mask; a scan converting unit for scan-converting the filtered 3-dimensional ultrasound image data; and a 3-dimensional rendering unit for performing 3-dimensional rendering upon the scan-converted 3-dimensional ultrasound image data to form a 3-dimensional ultrasound image.
Abstract:
The present invention relates to an ultrasound system and method capable of forming a plurality of three-dimensional ultrasound images at the time. The ultrasound system comprises: a volume data acquisition unit configured to transmit ultrasound signals to a target object, receive ultrasound echo signals reflected from the target object and acquire ultrasound data based on the received ultrasound echo signals, the volume data acquisition unit being further configured to form a plurality of sets of volume data based on the ultrasound data; and a processor configured to render the plurality of sets of the volume data to thereby form a plurality of three-dimensional ultrasound images.
Abstract:
Embodiments for providing a plurality of 3-dimensional ultrasound images by using a plurality of volume slices in an ultrasound system are disclosed. The ultrasound system comprises: an ultrasound data acquisition unit configured to transmit and receive ultrasound signals to and from a target object to acquire ultrasound data; a volume data forming unit configured to form volume data by using the ultrasound data; a user input unit for allowing a user to input a user instruction; and a processing unit configured to set a plurality of volume slice regions having different widths in the volume data in response to the user instruction and form a plurality of 3-dimensional ultrasound images by using volume slices defined by the volume slice regions.
Abstract:
The present invention relates to an ultrasound imaging device. The ultrasound imaging device includes: a data acquiring unit for acquiring 3-dimensional ultrasound image data based on receive signals formed based on ultrasound echoes reflected from a target object; a filtering unit for determining a size of a filtering mask of a filter, said size being adaptively determined according to an amount of the 3-dimensional ultrasound image data in data acquisition directions, the filtering unit being further configured to filter the 3-dimensional ultrasound image data by using the filtering mask; a scan converting unit for scan-converting the filtered 3-dimensional ultrasound image data; and a 3-dimensional rendering unit for performing 3-dimensional rendering upon the scan-converted 3-dimensional ultrasound image data to form a 3-dimensional ultrasound image.
Abstract:
A system and method of performing a high speed filtering of data by using a GPU is disclosed. According to embodiments of the present invention, the system and method of processing data by using a graphic processing unit (GPU) including a video memory comprising multiple blocks, comprises: acquiring an image frame including a plurality of pixels representative of a target object; receiving a user input for processing the image frame; grouping each predetermined number of the pixels of the image frame into a group; uploading each of the groups to a respective block of the video memory; and performing operations on the groups uploaded to the video memory based on the user input.
Abstract:
The present invention relates to an ultrasound system and method capable of providing three-dimensional ultrasound images. The ultrasound system of the present invention transmits ultrasound signals to a target object, receives ultrasound echo signals reflected from the target object and acquires ultrasound data based on the ultrasound echo signals. The ultrasound system allows a user to input rendering setting information containing information on at least two rendering directions. The ultrasound system forms volume data by using the ultrasound data, renders the volume data along the at least two rendering directions and forms three-dimensional ultrasound images corresponding to the at least two rendering directions. The ultrasound system stores the three-dimensional ultrasound images. The ultrasound system displays the three-dimensional ultrasound images on a display region.
Abstract:
The present invention relates to an ultrasound imaging system. The ultrasound imaging system includes an ultrasound diagnostic unit and an image processing unit. The ultrasound diagnostic unit transmits ultrasound signals to a target object and forms receive data based on ultrasound echo signals reflected from the target object. The image processing unit forms an ultrasound image based on the receive data. The image processing unit includes a graphic processing unit configured to perform at least one of functions including processing the receive data to form image data, performing scan conversion upon the image data to form scan-converted data suitable for display, and rendering and filtering the scan-converted data to form pixel data.