Abstract:
To increase the efficiency of utilizing protein, lipid and starch by ruminants, feed and urea-formaldehyde polymer are mixed in quantities suitable for a crosslinking reaction. The mixture is heated at a temperature, moisture content and time sufficient to covalently bond the urea-formaldehyde polymer with the proteins and starches to thereby protect the proteins, starches and contained lipids from degradation by rumen microbes.
Abstract:
An improved non-dispersing set retarder additive for foamed cements, cement compositions containing the additive, and methods of cementing in a subterranean zone penetrated by a well bore are provided. The set retarder additive includes a blend of a sulfonated lignin, preferably a lignosulfonate, with an alkali lignin, preferably a kraft lignin, having an organic sulfur content of 0-3.5% by weight in a ratio of about 6:4 to 8:2. The methods are basically comprised of the steps of preparing a foamed cement composition comprised of hydraulic cement, a non-dispersing set retarder, sufficient water to form a slurry, sufficient gas to foam the slurry and a foaming and foam stabilizing surfactant present in an amount sufficient to facilitate the formation of the foam and stabilize the foamed cement composition.
Abstract:
A method for microencapsulating agriculturally active substances such as pesticides to provide improved resistance to environmental degradation, especially ultra-violet light. The method employs as the UV protectant lignosulfonates, such as sulfite lignin or sulfonated lignin, or alternately sulfonated lignite, sulfonated tannins, napthalene sulfonates or other related compounds in combination with a protein such as a high bloom gelatin to form a capsule wall. The capsule wall formed by the interaction of these components is durable and has an ultra-violet protectant as an integral part of its structure.
Abstract:
A method is disclosed for the production of oxidized humic acids. The process of the invention comprises reacting humic acid bearing ores with oxygen under alkaline conditions at a temperature between 100.degree. C. and 200.degree. C. for at least 1/2 hour, but usually for 1-2 hours, to produce oxidized humic acids which are soluble at pH as low as 2.9 and which are formed in yields of at least 70%. The oxidized humic acids produced according to the process of the invention are also superior viscosity reducers.
Abstract:
A method for producing agriculturally active substances such as pesticides to provide improved resistance to environmental degradation, especially heat and ultra-violet light. The method involves the direct reaction of an active protein toxin of a biologically derived pesticide with a UV protectant to form a stable complex having the UV protectant as an integral part of its structure. The method employs lignosulfonates, such as sulfite lignin or sulfonated lignin, or alternately sulfonated lignite, sulfonated tannins, napthalene sulfonates or other related compounds as the UV protectant.
Abstract:
An improved non-dispersing set retarder additive for foamed cements, cement compositions containing the additive, and methods of cementing in a subterranean zone penetrated by a well bore are provided. The set retarder additive includes a blend of a sulfonated lignin, preferably a lignosulfonate, with an alkali lignin, preferably a kraft lignin, having an organic sulfur content of 0-3.5% by weight in a ratio of about 6:4 to 8:2. The methods are basically comprised of the steps of preparing a foamed cement composition comprised of hydraulic cement, a non-dispersing set retarder, sufficient water to form a slurry, sufficient gas to foam the slurry and a foaming and foam stabilizing surfactant present in an amount sufficient to facilitate the formation of the foam and stabilize the foamed cement composition.
Abstract:
A method is disclosed for production of acid soluble humates. Humic acid bearing ores are sulfoalkylated under alkaline conditions to produce high solids humic acid concentrates which are soluble at pH as low as 0.5 and in yields of at least 70 percent.